Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
- (a)
- First, a 20 × 20 × 5 mm magnesium plate sample was cut out (purity > 99.5%). Sandpaper (400 # → 600 # → 800 #) was used to grind and remove oil (10% NaOH solution), then the magnesium plate was rinsed with deionized water and air-dried for later use.
- (b)
- A 10 g/L Na2SiO3 solution using deionized water was prepared, and then NaOH powder was added to adjust the pH of the electrolyte to 13.
- (c)
- The sample was hung on the electrode and immersed into the electrolyte. The anode was a magnesium plate and the cathode was a stainless steel electrolytic cell.
- (d)
- The power supply parameters were adjusted. The average current density was 4A/cm2, the duty cycle was 35%, the frequency was 550 Hz, the temperature of the electrolyte was maintained at 10–40 °C, and the oxidation time was 20 min. A circulating cooling device was used to keep the temperature of the configured electrolyte at 10–40 °C.
- (e)
- After oxidation, the micro-arc MgO plate was rinsed thoroughly with deionized water and dried in hot air.
- (f)
- A 200 # interdigital electrode screen plate was designed and purchased. The test piece was placed under the mesh, and the prepared conductive silver paste was uniformly printed on the micro-arc oxidation plate through the screen hole by using a scraper.
- (g)
- After the printing was completed, the MAO plate was held at 80 °C for 1 h to ensure that the silver paste was completely cured to fabricate a micro-arc MgO humidity sensor.
2.2. Fabrication of Humidity Sensor
3. Results and Discussion
3.1. Characterization Results
3.2. Humidity-Sensing Properties
3.3. Humidity Sensing Mechanism Analysis
3.3.1. Sensing Mechanism of Micro-Arc MgO with Impedance as the Response Signal
3.3.2. Sensing Mechanism of Micro-Arc MgO with Capacitance as the Response Signal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tételin, A.; Pellet, C.; Laville, C.; N’Kaoua, G. Fast response humidity sensors for a medical microsystem. Sens. Actuators B Chem. 2003, 91, 211–218. [Google Scholar] [CrossRef]
- Rittersma, Z.M. Recent achievements in miniaturised humidity sensors—A review of transduction techniques. Sens. Actuators A Phys. 2002, 96, 196–210. [Google Scholar] [CrossRef]
- Benabdellah, N.; Bourhaleb, M.; Nasri, M.; Benazzi, N.; Dahbi, S. Design of temperature and humidity sensors for an electronic nose used in rotten food. In Proceedings of the 2016 2nd International Conference on Electrical and Information Technologies (ICEIT), Piscataway, NJ, USA, 4–7 May 2016; pp. 505–509. [Google Scholar]
- Lennon, J.A.; O’Brien, D.; Akkari, F. Fibre optic humidity sensors for the mushroom industry and for the curing of meats. In Proceedings of the Conference for Sensors, Measurement and Control, Tavistock, UK, 16–17 February 2000; Volume 1, p. 8. [Google Scholar]
- Dubey, C.; Kumar, B. Organic humidity sensors with different materials and its application in environment monitoring. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Piscataway, NJ, USA, 2–4 November 2018; p. 6. [Google Scholar]
- Leal-Junior, A.G.; Prado, A.; Frizera, A.; Pontes, M.J. Smartphone integrated polymer optical fiber humidity sensor: Towards a fully portable solution for healthcare. IEEE Sens. Lett. 2019, 3, 5000304. [Google Scholar] [CrossRef]
- Yin, Y.-Y.; Xing, Y.; Li, M.-W.; Li, Y.-N.; Wang, J.-N.; Li, T.; Zhang, L.-X. A 3D pillared-layer cadmium (II) metal-organic framework for chemiresistive humidity sensing with high performance. Inorg. Chem. Commun. 2018, 97, 49–55. [Google Scholar] [CrossRef]
- Juhasz, L.; Mizsei, J. Humidity sensor structures with thin film porous alumina for on-chip integration. Thin Solid Film. 2009, 517, 6198–6201. [Google Scholar] [CrossRef]
- Mallick, S.; Ahmad, Z.; Touati, F.; Shakoor, R.A. Improvement of humidity sensing properties of PVDF-TiO2 nanocomposite films using acetone etching. Sens. Actuators B-Chem. 2019, 288, 408–413. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Wang, D.; Wu, Z. Polypyrrole-Modified Tin Disulfide Nanoflower-Based Quartz Crystal Microbalance Sensor for Humidity Sensing. IEEE Sens. J. 2019, 19, 9166–9171. [Google Scholar] [CrossRef]
- Arunachalam, S.; Izquierdo, R.; Nabki, F. Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes. Sensors 2019, 19, 680. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Gao, S.; Cheng, X.; Wang, P.; Zhang, X.; Xu, Y.; Zhao, H.; Huo, L. Morphology controllable Fe2O3 nanostructures derived from Fe-based metal-organic frameworks for enhanced humidity sensing performances. Sens. Actuators B Chem. 2019, 297, 126744. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, H.; Lin, X.; Liu, S.; Fei, T.; Zhang, T. Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sens. Actuators B Chem. 2020, 304, 127270. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, Y.Z.; Huang, S.S.; Ren, S.T.; Li, P.; Li, J.J. Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 2011, 22. [Google Scholar] [CrossRef]
- Andika, R.; Aziz, F.; Ahmad, Z.; Doris, M.; Fauzia, V.; Bawazeer, T.M.; Alsenany, N.; Alsoufi, M.S.; Supangat, A. Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors. J. Mater. Sci. Mater. Electron. 2019, 30, 2382–2388. [Google Scholar] [CrossRef]
- Lu, Y.; Li, T.; Shang, X.; Wang, Y.; Cai, X. Research progress of micro-arc oxidation surface treatment of magnesium alloy. J. Biomed. Eng. 2016, 33, 1016–1019. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Chen, C.-F.; Gu, Y. Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications. Corros. Sci. 2015, 91, 7–28. [Google Scholar] [CrossRef]
- Thirupathi, R.; Solleti, G.; Sreekanth, T.; Sadasivuni, K.K.; Rao, K.V. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection. J. Electron. Mater. 2018, 47, 3468–3473. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, J.; Rawat, R.; Kumar, S.; Kaur, H.; Rao, K.V.; Rawat, M. A smart LPG sensor based on chemo-bio synthesized MgO nanostructure. J. Mater. Sci. Mater. Electron. 2018, 29, 11679–11687. [Google Scholar] [CrossRef]
- Reddy, L.P.B.; Megha, R.; Chethan, B.; Prakash, H.G.R.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Kim, D. Role of molybdenum trioxide in enhancing the humidity sensing performance of magnesium ferrite/molybdenum trioxide composite. Inorg. Chem. Commun. 2018, 98, 68–74. [Google Scholar] [CrossRef]
- Lu, X.; Lei, L.; Shen, Y.; Li, Y.; Wang, L. Design of the Sensor Signal Display and Switching System for Nano Measuring Machine. Process Autom. Instrum. 2012, 33, 63–65. [Google Scholar]
- Zhang, D.; Wang, M.; Zhang, W.; Li, Q. Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sens. Actuators B Chem. 2020, 304, 127234. [Google Scholar] [CrossRef]
- Burman, D.; Choudhary, D.S.; Guha, P.K. ZnO/MoS2-Based Enhanced Humidity Sensor Prototype with Android App Interface for Mobile Platform. IEEE Sens. J. 2019, 19, 3993–3999. [Google Scholar] [CrossRef]
- Aher, R.; Bhorde, A.; Nair, S.; Borate, H.; Pandharkar, S.; Naik, D.; Vairale, P.; Karpe, S.; Late, D.; Prasad, M.; et al. Solvothermal Growth of PbBi2Se4 Nano-Flowers: A Material for Humidity Sensor and Photodetector Applications. Phys. Status Solidi A Appl. Mater. Sci. 2019, 216. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, Y.; Fang, Z.; Kuang, Y.; Zhang, Y.; Peng, C.; Chen, G. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. Langmuir 2019, 35, 4834–4842. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Q.; Sheng, W.J.; Wang, X.B.; Zhang, K.D.; Du, L.; Zhou, J. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Sensors 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Yang, B.; Liu, J. Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sens. Actuators B Chem. 2018, 271, 256–263. [Google Scholar] [CrossRef]
- Luo, L.; Yuan, M.; Sun, H.; Peng, T.; Xie, T.; Chen, Q.; Chen, J. Effect of calcination temperature on the humidity sensitivity of TiO2/graphene oxide nanocomposites. Mater. Sci. Semicond. Process. 2019, 89, 186–193. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, S.; Chen, C.; Zhang, J.; Liu, J.; Li, P. Effects on structure, surface oxygen defects and humidity performance of Au modified ZnO via hydrothermal method. Appl. Surf. Sci. 2019, 486, 482–489. [Google Scholar] [CrossRef]
- Manjunatha, S.; Machappa, T.; Ravikiran, Y.T.; Chethan, B.; Revanasiddappa, M. Room temperature humidity sensing performance of polyaniline–holmium oxide composite. Appl. Phys. A 2019, 125, 361. [Google Scholar] [CrossRef]
- Rahim, I.; Shah, M.; Khan, A.; Luo, J.; Zhong, A.; Li, M.; Ahmed, R.; Li, H.; Wei, Q.; Fu, Y. Capacitive and resistive response of humidity sensors based on graphene decorated by PMMA and silver nanoparticles. Sens. Actuators B Chem. 2018, 267, 42–50. [Google Scholar] [CrossRef]
- Jiang, W.F.; Jia, M.; Wang, Y.S.; Li, L.Y.; Li, X.J. Accelerated resistive humidity sensing properties of silicon nanoporous pillar array. Thin Solid Film. 2009, 517, 2994–2996. [Google Scholar] [CrossRef]
- Sharma, K.; Islam, S.S. Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor. Sens. Actuators B Chem. 2016, 237, 443–451. [Google Scholar] [CrossRef]
- Reddy, L.P.B.; Megha, R.; Prakash, H.G.R.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Kumari, S.C.V.; Kim, D. Copper ferrite-yttrium oxide (CFYO) nanocomposite as remarkable humidity sensor. Inorg. Chem. Commun. 2019, 99, 180–188. [Google Scholar] [CrossRef]
- Pradeep, N.; Venkatachalaiah, C.; Venkatraman, U.; Santhosh, C.; Bhatnagar, A.; Jeong, S.K.; Grace, A.N. Magnesium oxide nanocubes deposited on an overhead projector sheet: Synthesis and resistivity-based hydrogen sensing capability. Microchim. Acta 2017, 184, 3349–3355. [Google Scholar] [CrossRef]
- Hu, G.F.; Zhou, R.R.; Yu, R.M.; Dong, L.; Pan, C.F.; Wang, Z.L. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083–1091. [Google Scholar] [CrossRef]
- Herrán, J.; Fernández, I.; Tena-Zaera, R.; Ochoteco, E.; Cabañero, G.; Grande, H. Schottky diodes based on electrodeposited ZnO nanorod arrays for humidity sensing at room temperature. Sens. Actuators B Chem. 2012, 174, 274–278. [Google Scholar] [CrossRef]
- Anderson, J.H.; Parks, G.A. Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 1968, 72, 3662–3668. [Google Scholar] [CrossRef]
- Chen, S.W.; Khor, O.K.; Liao, M.W.; Chung, C.K. Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field. Sens. Actuators B Chem. 2014, 199, 384–388. [Google Scholar] [CrossRef]
- Dickey, E.C.; Varghese, O.K.; Ong, K.G.; Gong, D.W.; Paulose, M.; Grimes, C.A. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films. Sensors 2002, 2, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Y.; Wang, M.; Wang, S.; Xue, Q. Humidity sensitive properties of amorphous (K,Na)NbO3 lead free thin films. Ceram. Int. 2014, 40, 10263–10267. [Google Scholar] [CrossRef]
Type | Meas Range | Inductive Signal Type | Response Time (s) | Recovery Time (s) | Ref |
---|---|---|---|---|---|
MAO MgO | 11–75.3%RH | Impedance | 13 | 61 | This work |
Capacitance | 341 | 63 | |||
MoSe2/CuWO4 | 0–67%RH | Capacitance | 109 | 9 | [22] |
ZnO/MoS2 | 0–85%RH | Current | 138 | 166 | [23] |
PbBi2Se4 | 11–97%RH | Resistance | 65 | 75 | [24] |
NFC/CNT | 11–95%RH | Current | 330 | 377 | [25] |
Polyimide | 25–90%RH | Capacitance | 20 | 22 | [26] |
Type | Maximum Hysteresis (%) | Inductive Signal Type | Relative Humidity (% RH) | Ref | |
---|---|---|---|---|---|
MAO MgO | 3.8 | Impedance | 13 | This work | |
5.7 | Capacitance | 341 | |||
SnO2/MoS2 | 5.5 | Capacitance | 67 | [27] | |
TiO2/graphene | 6.02 | Resistance | 48 | [28] | |
Au-ZnO | 2.35 | Impedance | 75 | [29] | |
Polyaniline–holmium | 1.2 | Resistance | 55 | [30] | |
Gr-AgNps | 6 | Capacitance | 80 | [31] | |
Gr-AgNps-PMMA | 9 | 75 |
Type | Sensitivity | Inductive Signal Type | Meas. Range | Ref | |
---|---|---|---|---|---|
11–57% RH | 57–90% RH | ||||
MAO MgO | 0.5 pF/%RH | 800 pF/%RH | Capacitance | 11.3–97.3% RH | This work |
9 MΩ/%RH | 33 kΩ/%RH | Impedance | |||
AAO Al2O3 | 0.05 pF/%RH | 0.3 pF/%RH | Capacitance | 20–90% RH | [15] |
3.125 MΩ/%RH | 6.67 MΩ/%RH | Resistance | |||
Si-NPA | 3.8 kΩ/%RH | 0.65 kΩ/%RH | Resistance | 11.3–94.6% RH | [32] |
SnO2/MoS2 | 333 pF/%RH | 4600 pF/%RH | Capacitance | 0–90% RH | [27] |
AAO Al2O3 | 80 pF/%RH | 333 pF/%RH | Capacitance | 10–90% RH | [33] |
CuFe2O4-Y203 | 8 MΩ/%RH | 1 MΩ/%RH | Resistance | 11.3–97.3% RH | [34] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Sheng, J.; Liu, J.; Shi, Z.; Jiu, L. Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers. Sensors 2020, 20, 1736. https://doi.org/10.3390/s20061736
Pan M, Sheng J, Liu J, Shi Z, Jiu L. Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers. Sensors. 2020; 20(6):1736. https://doi.org/10.3390/s20061736
Chicago/Turabian StylePan, Mingqiang, Jun Sheng, Jizhu Liu, Zeming Shi, and Lei Jiu. 2020. "Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers" Sensors 20, no. 6: 1736. https://doi.org/10.3390/s20061736
APA StylePan, M., Sheng, J., Liu, J., Shi, Z., & Jiu, L. (2020). Design and Verification of Humidity Sensors Based on Magnesium Oxide Micro-Arc Oxidation Film Layers. Sensors, 20(6), 1736. https://doi.org/10.3390/s20061736