The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms
Abstract
:1. Introduction
2. Objectives
3. A New Numerically-Sustained Marine Ecology
3.1. The Pipeline for the Computing of Ecological Indicators
- The automatically acquired counts for motile megafauna species moving around a cabled observatory station, along with, for instance, animal sizing (obtained by stereo or acoustic multi-beam, time-of-flight 3D systems, or laser-scan imaging) and codified behavioral activity (e.g., scavengers, predators, etc.) are input “biological variables” that act as a first basic layer of biological information. This procedure should be done for each network platform independently.
- A ratio between the counted animals in different observatory stations and the whole video-imaged or acoustically scanned area (by adding all fields of views together) could serve as a density estimate, which, together with rough estimates of class-size frequency distribution and total biomass could be classified as “biological parameters” in the next stage of system complexity. This procedure should be performed by pooling together data from all platforms of the monitoring network at corresponding time-lags.
- When data on local densities are computed for all species within a list (richness), evenness can be obtained as a measure for biodiversity. Richness and evenness are ecological indicators within a third layer of sematic information since they are attributes of ecosystem functionality. At this level, ecological interactions can be calculated as descriptors for the food web architecture by multivariate statistic approaches (i.e., species clustering in a Cartesian space indicates spatiotemporal co-occurrence and may be used to highlight recurrent associations).
3.2. An Example with Data Form the Crawler Mobile Platform
3.3. Ecosystem Analysis Challenges for Monitoring Networks
4. Cyber-Infrastructure Development
4.1. Sensor Integration
- Detect a new sensor when it is close to a monitoring peripheral unit without human intervention (i.e., Detection);
- Obtain unambiguous description of the sensor via the transmission of metadata (ID, model, etc.) and all required information to register it to an existing sensor web server (i.e., Identification);
- Establish communication between the platform and sensor to automatically adapt the operation settings (e.g., activate a specific acquisition channel, set the sampling rate, etc.; i.e. Configuration);
- Retrieve preliminary data in order to query the sensor about the required interface asset in order to parse, process, and store the data (Simple Measurement Operations);
- Manage data streaming into the archiving server (i.e., Data Ingestion);
- Set the “plug’n’play” mechanism aimed at reducing power and computational costs and lower the bandwidth usage (i.e., Resource-Constrained).
4.2. Automated Video-Imaging
4.3. Intelligent Data Banking
- (1)
- Structure: The synchronous real-time storage of the input row’s biological and environmental data as an incremental time series (one column per variable).
- (2)
- Organization: The identification of a “biological event” (corresponding to the detection of an individual into an image) can be associated with a series of concomitant environmental variables (i.e., a data line) as a shapshot of the abiotic (i.e., habitat) portion of the Hutchinson niche [107].
- (3)
- Function: The creation of a biological matrix for a species by extracting all data lines with counted individuals along with all associated environmental data. A statistically-based vision of the abiotic niche can be achieved by averaging all environmental variables at different time intervals (e.g., diel, seasonal, and annual), and tolerance levels can be assessed as the maximum and minimum values above and below which no individual is detected. Biological matrixes for all the species can then be compared together (e.g., by K-NN) defining the abiotic plus the biotic characteristics of their niches, hence providing information on their ecological interactions.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacobson, M.; Charlson, R.; Rodhe, H.; Orians, G. Earth System Science: From Biogeochemical Cycles to Global Changes; Academic Press: Cambridge, MA, USA, 2000; p. 527. [Google Scholar]
- Reid, W.V.; Chen, D.; Goldfarb, L.; Hackmann, H.; Lee, Y.T.; Mokhele, K.; Ostrom, E.; Raivio, K.; Rockström, J.; Schellnhuber, H.J.; et al. Earth System science for global sustainability: Grand challenges. Science 2010, 330, 916–917. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, H.A.; André, M.; Beranzoli, L.; Cağatay, M.N.; Colaço, A.; Cannat, M.; Dañobeitia, J.; Favali, P.; Géli, L.; Gillooly, M.; et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Prog. Oceanogr. 2011, 91, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Aguzzi, J.; Fanelli, E.; Billett, D.; Gjerde, K.; Jamieson, A.; Ramirez-Llodra, E.; Smith, C.; Snelgrove, P.; Thomsen, L.; et al. An ecosystem-based deep-ocean strategy. Science 2017, 355, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Grémillet, D.; Puech, W.; Garçon, V.; Boulinier, T.; Le Maho, Y. Robots in ecology: Welcome to the machine. Open J. Ecol. 2012, 2, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.B.; Pizarro, O.; Steinberg, D.M.; Friedman, A.; Bryson, M. Reflections on a decade of autonomous underwater vehicles operations for marine survey at the Australian Centre for Field Robotics. Annu. Rev. Control. 2016, 42, 158–165. [Google Scholar] [CrossRef]
- Moline, M.A.; Benoit-Bird, K. Sensor fusion and autonomy as a powerful combination for biological assessment in the marine environment. Robotics 2016, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Rajan, K.; Py, F.; Barreiro, J. Towards deliberative control in marine robotics. In Marine Robot Autonomy; Seto, M., Ed.; Springer: New York, NY, USA, 2013; pp. 91–175. [Google Scholar]
- Lovett, R.A. Underwater robot automates ocean testing. Nature 2010. [Google Scholar] [CrossRef]
- Revindran, S. Underwater robot can follow marine organisms over record distances. Nature 2010. [Google Scholar] [CrossRef]
- Candeloro, M.; Mosciaro, F.; Sørensen, A.J.; Ippoliti, G.; Ludvigsen, M. Sensor-based autonomous path-planner for sea-bottom exploration and mosaicking. IFAC 2015, 48, 31–36. [Google Scholar] [CrossRef]
- Guerrero-González, A.; García-Córdova, F.; Ortíz, F.J.; Gilabert, J. A multirobot platform based on autonomous surface and underwater vehicles with bio-inspired neurocontrollers for long-term oil spills monitoring. Auton. Robot. 2016, 40, 1321–1342. [Google Scholar] [CrossRef]
- White, C.F.; Lin, Y.; Clark, C.M.; Lowe, C.G. Human vs robot: Comparing the viability and utility of autonomous underwater vehicles for the acoustic telemetry tracking of marine organisms. J. Exp. Mar. Biol. Ecol. 2016, 485, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Corgnati, L.; Marini, S.; Mazzei, L.; Ottaviani, E.; Aliani, S.; Conversi, A.; Griffa, A. Looking inside the ocean: Toward an autonomous imaging system for monitoring gelatinous zooplankton. Sensors 2016, 16, 2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnin, D.; Schmitt, G.; Fischer, C.; Laurenzis, M.; Christnacher, F. Active-imaging-based underwater navigation. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX; International Society for Optics and Photonics: Toulouse, France, 2015; Volume 9649, p. 96490H. [Google Scholar] [CrossRef]
- Claus, B.; Kinsey, J.; Girdhar, Y. Towards persistent cooperative marine robotics. In Proceedings of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016. [Google Scholar] [CrossRef]
- Steinberg, M.; Stack, J.; Paluszkiewicz, T. Long duration autonomy for maritime systems: Challenges and opportunities. Auton. Robot. 2016, 40, 1119–1122. [Google Scholar] [CrossRef] [Green Version]
- Bayat, B.; Crasta, N.; Crespi, A.; Pascola, A.M.; Ijspeert, A. Environmental monitoring using autonomous vehicles: A survey of recent searching techniques. Curr. Opin. Biotechnol. 2017, 45, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, H.D.; Ellis, K.; Barca, J.C.; Dorin, A. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. Neural Comput. Appl. 2020, 32, 567–588. [Google Scholar] [CrossRef]
- Quaranta, G.; Lacarbonara, W.; Masri, S.F. A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 2020, 99, 1709–1761. [Google Scholar] [CrossRef]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Crise, A.; Ribera d’Alcalà, M.; Mariani, P.; Petihakis, G.; Robidart, J.; Iudicone, D.; Bachmayer, R.; Malfatti, F. A Conceptual Framework for Developing the Next Generation of Marine OBservatories (MOBs) for Science and Society. Front. Mar. Sci. 2018, 5, 318. [Google Scholar] [CrossRef]
- Aguzzi, J.; Chatzievangelou, D.; Marini, S.; Fanelli, E.; Danovaro, R.; Flögel, S.; Lebris, N.; Juanes, F.; Leo, F.C.D.; Rio, J.D.; et al. New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems. Environ. Sci. Techol. 2019, 53, 6616–6631. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, A.W.; Godley, B.J.; Sheehan, E.V.; Votier, S.C.; Witt, M.J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 2016, 14, 424–432. [Google Scholar] [CrossRef]
- Marini, S.; Fanelli, E.; Sbragaglia, V.; Azzurro, E.; Fernandez, J.D.R.; Aguzzi, J. Tracking Fish Abundance by Underwater Image Recognition. Sci. Rep. 2018, 8, 13748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papworth, D.J.; Marini, S.; Conversi, A. A Novel, Unbiased Analysis Approach for Investigating Population Dynamics: A Case Study on Calanus finmarchicus and Its Decline in the North Sea. PLoS ONE 2016, 11, e0158230. [Google Scholar] [CrossRef] [PubMed]
- Woodall, L.C.; Andradi-Brown, D.A.; Brierley, A.S.; Clark, M.R.; Connelly, D.; Hall, R.A.; Howell, K.L.; Huvenne, V.A.I.; Linse, K.; Ross, R.E.; et al. A multidisciplinary approach for generating globally consistent data on mesophotic, deep-pelagic, and bathyal biological communities. Oceanography 2018, 31, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. (Eds.) Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; p. 56. ISBN 978-3-947851-13-3. [Google Scholar]
- Bindoff, N.L.; Cheung, W.W.L.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.; Jiao, N.; Karim, M.S.; Levin, L.; et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneva, Switzerland, 2019; in press. [Google Scholar]
- Rountree, R.; Aguzzi, J.; Marini, S.; Fanelli, E.; De Leo, F.C.; Del Río, J.; Juanes, F. Towards an optimal design for ecosystem-level ocean observatories. Front. Mar. Sci. 2019. [Google Scholar] [CrossRef]
- Thomson, S.K. Sampling, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-0-470-40231-3. [Google Scholar]
- ICES. Report of the Second Workshop on Practical Implementation of Statistical Sound Catch Sampling Programmes; ICES CM 2012/ACOM 52; ICES: Burnaby, BC, Canada, 2013; p. 71. [Google Scholar]
- Thomsen, L.; Aguzzi, J.; Costa, C.; De Leo, F.C.; Ogston, A.; Purser, A. 7. The oceanic biological pump: Rapid carbon transfer to the Deep Sea during winter. Sci. Rep. 2017, 7, 10763. [Google Scholar] [CrossRef] [Green Version]
- Aguzzi, J.; Company, J.B.; Costa, C.; Matabos, M.; Azzurro, E.; Mànuel, A.; Menesatti, P.; Sardà, F.; Canals, M.; Delory, E.; et al. Challenges to assessment of benthic populations and biodiversity as a result of rhythmic behaviour: Video solutions from cabled observatories. Oceanogr. Mar. Biol. Annu. Rev. 2012, 50, 235–286. [Google Scholar]
- Aguzzi, J.; Doya, C.; Tecchio, S.; De Leo, F.L.; Azzurro, E.; Costa, C.; Sbragaglia, V.; Del Río, J.; Navarro, J.; Ruhl, H.A.; et al. Coastal observatories for monitoring of fish behaviour and their responses to environmental changes. Rev. Fish Biol. Fish. 2015, 25, 463–483. [Google Scholar] [CrossRef] [Green Version]
- Fehlmann, G.; King, A.J. Bio-logging. Curr. Biol. 2016, 26, R830–R831. [Google Scholar] [CrossRef] [Green Version]
- Wilmer, C.C.; Nickel, B.; Bryce, C.M.; Smith, J.A.; Wheat, R.E.; Yovovich, V. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 2016, 96, 1741–1753. [Google Scholar] [CrossRef]
- Danovaro, R.; Snelgrove, P.; Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef]
- Edgar, G.J.; Bates, A.E.; Bird, T.J.; Jones, A.H.; Kininmonth, S.; Stuart-Smith, R.D.; Webb, T.J. New Approaches to Marine Conservation Through the Scaling Up of Ecological Data. Annu. Rev. Mar. Sci. 2016, 8, 435–461. [Google Scholar] [CrossRef] [PubMed]
- Skiena, S.S. The Data Science Design Manual; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-55443-3. [Google Scholar] [CrossRef]
- Recknagel, F.; Michener, W.K. Ecological Informatics: Data Management and Knowledge Discovery, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-59926-7. [Google Scholar] [CrossRef]
- Waite, T.A.; Campbell, L.G. Controlling the false discovery rate and increasing statistical power in ecological studies. Ecoscience 2006, 13, 439–442. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Beauchamp, G. Time for some a priori thinking about post hoc testing. Behav. Ecol. 2008, 19, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Tittensor, D.P.; Mora, C.; Jets, W.; Lotze, H.K.; Richard, D.; Vanden Berhe, R.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.E.; Bendoricchio, G. Fundamentals of Ecological Modelling; Elsevier: Amsterdam, The Netherlands, 2001; Volume 21. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hobbs, N.T.; Hooten, M.B. Bayesian Models: A Statistical Primer for Ecologists; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Purser, A.; Thomsen, L.; Barnes, C.; Best, M.; Chapman, R.; Hofbauer, M.; Menzel, M.; Wagner, H. Temporal and spatial benthic data collection via an internet operated Deep Sea Crawler. Methods Oceanogr. 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Doya, C.; Chatzievangelou, D.; Bahamon, N.; Purser, A.; De Leo, F.C.; Juniper, S.K.; Thomsen, L.; Aguzzi, J. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV). PLoS ONE 2017, 12, e0176917. [Google Scholar] [CrossRef]
- Aguzzi, J.; Costa, C.; Robert, K.; Matabos, M.; Antonucci, F.; Juniper, K.; Menesatti, P. Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network. Sensors 2011, 11, 10534–10556. [Google Scholar] [CrossRef] [Green Version]
- Lechtenfeld, O.; Hertkorn, N.; Shen, Y.; Witt, M.; Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 2015, 6, 6711. [Google Scholar] [CrossRef] [Green Version]
- De Leo, F.C.; Ogata, B.; Sastri, A.R.; Heesemann, M.; Mihály, S.; Galbraith, M.; Morley, M.G. High-frequency observations from a deep-sea cabled observatory reveal seasonal overwintering of Neocalanus spp. in Barkley Canyon, NE Pacific: Insights into particulate organic carbon flux. Prog. Oceanogr. 2018, 169, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Castillón, M.; Palomer, A.; Forest, J.; Ridao, P. State of the Art of Underwater Active Optical 3D Scanners. Sensors 2019, 19, 5161. [Google Scholar] [CrossRef] [Green Version]
- Mariani, P.; Quincoces, I.; Haugholt, K.H.; Chardard, Y.; Visser, A.W.; Yates, C.; Piccinno, G.; Reali, G.; Risholm, P.; Thielemann, J.T. Range-gated imaging system for underwater monitoring in ocean environment. Sustainability 2019, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Hussey, N.E.; Kessel, S.T.; Aarestrup, K.; Cooke, S.J.; Cowley, P.D.; Fisk, A.T.; Harcourt, R.G.; Holland, K.N.; Iverson, S.J.; Kocik, J.F.; et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science 2015, 348, 1255642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sande, J.V.; Quesson, B.; Beerens, P.; Fassler, S. Classification of pelagic fish using wideband echosounders. J. Acoust. Soc. Am. 2017, 141, 3862. [Google Scholar] [CrossRef]
- Sheehan, E.V.; Bridger, D.; Nancollas, S.J.; Pittman, S.J. PelagiCam: A novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures. Environ. Monit. Assess. 2020, 192, 11. [Google Scholar] [CrossRef]
- Deville, J.C.; Särndal, C.E. Calibration estimators in survey sampling. J. Am. Stat. Assoc. 1992, 87, 376–382. [Google Scholar] [CrossRef]
- Valliant, R.; Dever, J.A. Estimating propensity adjustments for volunteer web surveys. Sociol. Methods Res. 2011, 40, 105–137. [Google Scholar] [CrossRef]
- Baker, R.; Brick, J.M.; Bates, N.A.; Battaglia, M.; Couper, M.P.; Dever, J.A.; Gile, K.J.; Tourangeau, R. Summary report of the AAPOR task force on non-probability sampling. J. Surv. Stat. Methodol. 2013, 1, 90–143. [Google Scholar] [CrossRef]
- Hengl, T. A Practical Guide to Geostatistical Mapping, 2nd ed.; Office for Official Publications of the European Communities: Brussels, Belgium, 2009; ISBN 978-92-79-06904-8. [Google Scholar]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Di Piazza, A.; Conti, F.L.; Noto, L.V.; Viola, F.; La Loggia, G. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 396–408. [Google Scholar] [CrossRef]
- Shenoi, R.A.; Bowker, J.A.; Dzielendziak, A.S.; Lidtke, A.K.; Zhu, G.; Cheng, F.; Argyos, D.; Fang, I.; Gonzalez, J.; Johnson, S.; et al. Global Marine Technology Trends 2030; University of Southampton: Southampton, UK, 2015; p. 186. ISBN 978-0-9933720-0-1. [Google Scholar]
- Recknagel, F. Ecological applications of adaptive agents. In Ecological Informatics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 73–88. ISBN 978-3-662-05150-4. [Google Scholar] [CrossRef]
- Michener, W.K.; Jones, M.B. Ecoinformatics: Supporting ecology as a data-intensive science. Trends Ecol. Evol. 2010, 27, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, J.S.; Bushnell, M.; Coppola, L.; Karstensen, J.; Buttigieg, P.L.; Pearlman, F.; Simpson, P.; Barbier, M.; Muller-Karger, F.E.; Muñoz-Mas, C. Evolving and sustaining ocean best practices and standards for the next decade. Front. Mar. Sci. 2019, 6, 277. [Google Scholar] [CrossRef]
- Zakova, M.; Kremen, P.; Zelezny, F.; Lavrac, N. Automating knowledge discovery workflow composition through ontology-based planning. IEEE Trans. Autom. Sci. Eng. 2011, 8, 253–264. [Google Scholar] [CrossRef]
- Kousalya, G.; Balakrishnan, P.; Pethuru, R.C. Workflow scheduling algorithms and approaches. In Automated Workflow Scheduling in Self-Adaptive Clouds; Computer Communications and Networks; Springer: Berlin/Heidelberg, Germany; Cham, Switzerland, 2017; pp. 65–83. ISBN 978-3-319-56982-6. [Google Scholar] [CrossRef]
- Gurney, R.J.; Badcock, N.S.; Garnett, E.A.; Godfray, H.C.J. The environmental eScience revolution. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2009, 367, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.; Kozyra, J. eScience and Informatics for international science programs. Prog. Earth Planet. Sci. 2015, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.J. Spatial data infrastructures for coastal environments. In Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management; Yang, X., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 91–112. ISBN 978-3-540-88183-4. [Google Scholar] [CrossRef]
- Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial cyberinfrastructure: Past, present and future. Comput. Environ. Urban Syst. 2010, 34, 264–277. [Google Scholar] [CrossRef]
- Laura, J.R.; Hare, T.M.; Gaddis, L.R.; Fergason, R.L.; Skinner, J.A.; Hagerty, J.J.; Archinal, B.A. Towards a planetary spatial data infrastructure. ISPRS Int. J. Geo Inf. 2017, 6, 181. [Google Scholar] [CrossRef] [Green Version]
- Borcard, D.; Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model. 2002, 153, 51–68. [Google Scholar] [CrossRef]
- Matabos, M.; Bui, A.O.; Mihály, S.; Aguzzi, J.; Juniper, D.S.K.; Ajayamohan, R.S. High-frequency study of benthic megafaunal community dynamics in Barkley canyon: A multidisciplinary approach using the NEPTUNE Canada network. J. Mar. Syst. 2014, 130, 56–68. [Google Scholar] [CrossRef]
- Puillat, I.; Prevosto, M.; Mercier, H.; Thomas, S. Time series analysis of marine data: A key knowledge at the crossroads of marine sciences. J. Mar. Syst. 2014, 130, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Florea, A.G.; Bui, C. Membrane Computing for the Distributed Control of Robotic Swarms: Engineering Research and Opportunities; IGI Global Dissemination of Knowledge: Hershey, PA, USA, 2017; p. 119. ISBN 9781522522812. [Google Scholar]
- Del Rio, J.; Toma, D.M.; Martinez, E.; O’Reilly, T.; Delory, E.; Pearlman, P.; Waldmann, C.; Jirka, S. A sensor web architecture for integrating smart oceanographic sensors into the semantic sensor web. IEEE J. Ocean. Eng. 2018, 43, 830–842. [Google Scholar] [CrossRef] [Green Version]
- Bröring, A.; Krzysztof, J.; Christoph, S.; Werner, K. Semantic challenges for sensor plug and play. In Web and Wireless Geographical Information Systems; W2GIS; Lecture Notes in Computer Science; Carswell, J.D., Fotheringham, A.S., McArdle, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5886, pp. 72–86. ISBN 978-3-642-10601-9. [Google Scholar] [CrossRef]
- Smith, L.M.; Barth, J.A.; Kelley, D.S.; Plueddemann, A.I.; Rodero, I.; Ulses, G.A.; Vardaro, M.F.; Weller, R. The Ocean Observatories Initiative. Oceanography 2018, 31, 16–35. [Google Scholar] [CrossRef]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [Google Scholar] [CrossRef] [Green Version]
- Jameel, S.M.; Hashmani, M.A.; Alhussain, H.; Rehman, M.; Budiman, A. An Optimized Deep Convolutional Neural Network Architecture for Concept Drifted Image Classification. In Intelligent Systems and Applications; IntelliSys 2019; Bi, Y., Bhatia, R., Kapoor, S., Eds.; Springer: Cham, Switzerland, 2020; Volume 1037, pp. 932–942. ISBN 978-3-030-29516-5. [Google Scholar] [CrossRef]
- Konovalov, D.A.; Saleh, A.; Bradley, M.; Sankupellay, M.; Marini, S.; Sheaves, M. Underwater fish detection with Weak Multi-Domain Supervision. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, N.; Benfield, M.; Culverhouse, P. Time to automate identification. Nature 2010, 467, 154–155. [Google Scholar] [CrossRef]
- Schettini, R.; Corchs, S. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Treibitz, T.; Schechner, Y.Y. Turbid scene enhancement using multi-directional illumination fusion. IEEE Trans. Image Process. 2012, 21, 4662–4667. [Google Scholar] [CrossRef]
- Chiang, J.Y.; Chen, Y.-C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2012, 21, 1756–1769. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cosman, P.C. Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef]
- Andono, P.N.; Purnama, I.; Hariadi, M. Underwater image enhancement using adaptive filtering for enhanced SIFT-based image matching. J. Theor. Appl. Inf. Technol. 2013, 52, 273–280. [Google Scholar]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Wang, R.; Zheng, H.; Ji, G.; Qiao, X. ZooplanktoNet: Deep convolutional network for zooplankton classification. In Proceedings of the OCEANS Meeting, Shanghai, China, 12–13 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. Deepfish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 2016, 187, 49–58. [Google Scholar] [CrossRef]
- Lopez-Vazquez, V.; Lopez-Guede, J.-M.; Marini, S.; Fanelli, E.; Johnsen, E.; Aguzzi, J. Video-imaging enhancement and machine learning pipeline for animal tracking and classification at cabled observatories. Sensors 2020, 20, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning. In Information Science and Statistics; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9780387310732. [Google Scholar]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44, 1761–1776. [Google Scholar] [CrossRef]
- Dougherty, G. Pattern Recognition and Classification: An Introduction; Springer Publishing Company: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4614-5323-9. [Google Scholar] [CrossRef]
- Cruz, R.M.; Sabourin, R.; Cavalcanti, G.D. Dynamic classifier selection: Recent advances and perspectives. Inf. Fusion 2018, 41, 195–216. [Google Scholar] [CrossRef]
- Sirqueira, T.F.M.; Braga, R.; Araújo, M.A.P.; David, J.M.N.; Campos, F.; Ströele, V. An approach to configuration management of scientific workflows. Int. J. Web Portals 2017, 9, 20–46. [Google Scholar] [CrossRef]
- Kiran, M.; Pouyoul, E.; Mercian, A.; Tierney, B.; Guok, C.; Monga, I. Enabling intent to configure scientific networks for high performance demands. Future Gener. Comput. Syst. 2018, 79, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Ming, Z.; Wang, G.; Yan, Y.; Panchal, J.H.; Goh, C.H.; Allen, J.K.; Mistree, F. Ontology-Based representation of design decision hierarchies. J. Comput. Inf. Sci. Eng. 2018, 18, 011001. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Pereira, J.N.; Auger, V.; Beisiegel, K.; Benjamin, R.; Bergmann, M.; Bowden, D.; Buhl-Mortensen, P.; De Leo, F.C.; Dionísio, G.; Durden, J.M. Current and future trends in marine image annotation software. Prog. Oceanogr. 2016, 149, 106–120. [Google Scholar] [CrossRef]
- Langenkämper, D.; Zurowietz, M.; Schoening, T.; Nattkemper, T.W. BIIGLE 2.0: Browsing and annotating large marine image collections. Front. Mar. Sci. 2017, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Usländer, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M. Future Internet technologies for environmental applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef]
- Pocheville, A. The Ecological Niche: History and Recent Controversies. In Handbook of Evolutionary Thinking in the Sciences; Heams, T., Huneman, P., Lecointre, G., Silberstein, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 547–586. ISBN 978-94-017-9014-7. [Google Scholar] [CrossRef]
- Hongqing, C.; Recknagel, F.; Orr, P.T. Parameter Optimization Algorithms for Evolving Rule Models Applied to Freshwater Ecosystems. IEEE Trans. Evol. Comput. 2013, 18, 793–806. [Google Scholar] [CrossRef]
- Azzali, I.; Vanneschi, L.; Mosca, A.; Bertolotti, L.; Gioacobini, M. Towards the use of genetic programming in the ecological modelling of mosquito population dynamics. Genet. Program. Evol. Mach. 2020. [Google Scholar] [CrossRef]
- Aguzzi, J.; Lázaro, A.; Condal, F.; Guillen, J.; Nogueras, M.; Rio, J.; Costa, C.; Menesatti, P.; Puig, P.; Sardà, F. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring. Sensors 2011, 11, 5850–5872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delory, E.; Castro, A.; Waldmann, C.; Rolin, J.F.; Woerther, P.; Gille, J.; Del Rio, J.; Zielinski, O.; Hareide, N.R.; Pearlman, J. NeXOS Development plans in ocean optics, acoustics and observing systems interoperability. In Proceedings of the 2014 IEEE Sensor Systems for a Changing Ocean (SSCO), Brest, France, 13–17 October 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Del Rio, J.; Nogueras Cervera, M.; Toma, D.M.; Cadena Muñoz, J.; Crespin, J.; Martinez Padro, E.; Carandell Widmer, M.; Masmitjà Rusiñol, I.; Artero Delgado, C.; Bghiel, I.; et al. Continuous measurements (since 2009) of various CTD instruments deployed at the OBSEA cabled underwater observatory. PANGEA 2019. [Google Scholar] [CrossRef]
- Del Rio, J.; Nogueras Cervera, M.; Toma, D.M.; Cadena Muñoz, J.; Crespin, J.; Martinez Padro, E.; Carandell Widmer, M.; Masmitjà Rusiñol, I.; Artero Delgado, C.; Bghiel, I.; et al. Continuous measurements (since 2010) of weather stations deployed at the OBSEA cabled underwater observatory buoy and shore station. PANGAEA 2019. [Google Scholar] [CrossRef]
- Del Rio, J.; Nogueras Cervera, M.; Toma, D.M.; Cadena Muñoz, J.; Crespin, J.; Martinez Padro, E.; Carandell Widmer, M.; Masmitjà Rusiñol, I.; Artero Delgado, C.; Bghiel, I.; et al. Continuous current and wave measurements (since 2010) recorded by ADCP deployed at the OBSEA cabled underwater observatory. PANGAEA 2019. [Google Scholar] [CrossRef]
Autecology | Biomass |
Distribution ranges (bathymetric, geographic, endemism) | |
Connectivity ranges of adults (passive movement by currents, active movement by locomotor activity) | |
Reproduction cycles (seasonal bathymetric displacements) | |
Growth cycles (growth rates and longevity) | |
Sex ratio (dimorphism in color and size) | |
Trophic niche (food items) | |
Rhythmic mode of displacement (endobenthic, nektobenthic, and benthopelagic) | |
Ethology (intra- and interspecific interactions) | |
Bioturbation (burrowing, burying) | |
Synecology | Richness and Biodiversity (taxonomic and functional) |
Trophic architecture (Guilds taxonomic composition, redundancy) | |
Animal-mediated benthopelagic coupling/energy transference (deep scattering layers, bioluminescence panoramas) | |
Nurseries/Spawning grounds Productivity (biomasses) |
Indicators | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Apr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Richness | 17 | 17 | 16 | 13 | 13 | 16 | 17 | 17 | 13 | 14 | 14 | 14 | 14 | 13 |
Diversity (Shannon Index) | 1.97 | 2.00 | 2.13 | 1.87 | 1.48 | 1.02 | 1.84 | 1.90 | 1.80 | 2.14 | 2.05 | 1.86 | 1.39 | 2.23 |
Diversity (Simpson Index) | 0.79 | 0.84 | 0.85 | 0.81 | 0.61 | 0.4 | 0.74 | 0.71 | 0.72 | 0.84 | 0.84 | 0.76 | 0.59 | 0.87 |
Diversity (Fisher α) | 3.96 | 3.27 | 3.29 | 2.45 | 2.20 | 2.57 | 3.22 | 3.86 | 2.55 | 2.72 | 2.78 | 2.98 | 2.36 | 2.61 |
Biomass (g/m2) | 44 | 34 | 41 | 161 | 477 | 770 | 285 | 34 | 30 | 143 | 49 | 25 | 36 | 39 |
Project | Acronym | Web |
---|---|---|
Optimizing and Enhancing the Integrated Atlantic Ocean Observing Systems | AtlantOS | https://www.atlantos-h2020.eu/ |
Bringing together Research and Industry for the Development for the Development of Glider Environmental Services | BRIDGES | www.bridges-h2020.eu |
Copernicus Marine Environment Monitoring Service | CMEMS | http://marine.copernicus.eu/ |
European Marine Observation and Data Network | EmodNet | www.emodnet-physics.eu/Portal |
European Multidisciplinary Seafloor and water-column Observatory | EMSO-ERIC | http://www.emso-eu.org/ |
European Global Ocean Observing System (SeaDataNet and SeaDataCloud) | EuroGOOS | www.seadatanet.org |
Fixed-Point Open Ocean Observatories | FixO3 | www.fixo3.eu |
Global Earth Observation System of Systems | GEOSS | www.earthobservations.org/geoss.php |
Towards a joint European research infrastructure network for coastal observatories | JERICO-NEXT | http://www.jerico-ri.eu/ |
NEXt generation, cost-effective, compact, multifunctional web enabled Ocean Sensor systems empowering marine, maritime and fisheries management | NEXOS | www.nexosproject.eu |
Ocean Data Interoperability Platform | ODIP I/II | www.odip.eu |
In Situ Chemical Mapping probes | SCHeMA | www.schema-ocean.eu |
Marine sensors for the 21st Century | SenseOCEAN | www.senseocean.eu/ |
Sensing, monitoring and actuating on the Underwater world through a federated Research InfraStructure Extending the future internet | SUNRISE | http://fp7-sunrise.eu/ |
Improving and integrating European ocean observing and forecasting systems for sustainable use of the oceans | EUROSEA | https://www.eurosea.eu/ |
Blue-Cloud: Piloting innovative services for Marine Research and the Blue Economy | Blue-Cloud | https://cordis.europa.eu/project/id/862409 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguzzi, J.; Chatzievangelou, D.; Francescangeli, M.; Marini, S.; Bonofiglio, F.; del Rio, J.; Danovaro, R. The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms. Sensors 2020, 20, 1751. https://doi.org/10.3390/s20061751
Aguzzi J, Chatzievangelou D, Francescangeli M, Marini S, Bonofiglio F, del Rio J, Danovaro R. The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms. Sensors. 2020; 20(6):1751. https://doi.org/10.3390/s20061751
Chicago/Turabian StyleAguzzi, Jacopo, Damianos Chatzievangelou, Marco Francescangeli, Simone Marini, Federico Bonofiglio, Joaquin del Rio, and Roberto Danovaro. 2020. "The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms" Sensors 20, no. 6: 1751. https://doi.org/10.3390/s20061751
APA StyleAguzzi, J., Chatzievangelou, D., Francescangeli, M., Marini, S., Bonofiglio, F., del Rio, J., & Danovaro, R. (2020). The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms. Sensors, 20(6), 1751. https://doi.org/10.3390/s20061751