A Closed-form Expression to Estimate the Uncertainty of THD Starting from the LPIT Accuracy Class
Abstract
:1. Introduction
2. Power Quality Overview
3. The Closed-Form Expression
3.1. Mathematical Development
3.2. Practical Considerations
4. Tests & Results
4.1. Validation of the Closed-Form Expression
- Three accuracy classes of LPITs, 0.1, 0.2, and 0.5. This choice has been taken to include a huge variety of devices in the test.
- Three distorted signals. In the remainder of the work referred to as , , and . The three signals consist of a 50 Hz component plus different harmonic contents. In particular, contains 4 harmonics, the 2nd, 4th, 6th, and 8th; signal contains 7 harmonics from the 2nd to the 8th; finally, signal contains 15 harmonics from 2nd to the 16th. The three signals have been designed to represent various signals with few or several harmonics, even or odd.
4.2. Tests vs. Different Accuracy Limits for Harmonics
4.3. Tests vs. Different Harmonics’ Amplitude
4.4. Normalized Standard Uncertainty Spread.
4.5. Tests vs. High Number of Harmonic Components
4.5.1. Tests with 20 and 25 Harmonic Components
4.5.2. A Further Simplification of the Expression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, J.; He, K.; Cui, L. Charge-simulation-based electric field analysis and electrical tree propagation model with defects in 10 kV XLPE cable joint. Energies 2019, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Bragatto, T.; Cerretti, A.; D’Orazio, L.; Gatta, F.M.; Geri, A.; Maccioni, M. Thermal effects of ground faults on MV joints and cables. Energies 2019, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Calcara, L.; D’Orazio, L.; Della Corte, M.; Di Filippo, G.; Pastore, A.; Ricci, D.; Pompili, M. Faults evaluation of MV underground cable joints. In Proceedings of the AEIT International Annual Conference, Florence, Italy, 18–20 September 2019. [Google Scholar]
- Mingotti, A.; Ghaderi, A.; Peretto, L.; Tinarelli, R.; Lama, F. Test setup design, and calibration for tan delta measurements on MV cable joints. In Proceedings of the 9th IEEE International Workshop on Applied Measurements for Power Systems, Bologna, Italy, 26–28 September 2018. [Google Scholar]
- Mingotti, A.; Ghaderi, A.; Mazzanti, G.; Peretto, L.; Tinarelli, R.; Valtorta, G.; Danesi, S. Low-cost monitoring unit for MV cable joints diagnostics. In Proceedings of the 9th IEEE International Workshop on Applied Measurements for Power Systems, Bologna, Italy, 26–28 September 2018. [Google Scholar]
- Shanmugam, M.; Sivakumar, G.; Arunkumar, A.; Rajaraman, D.; Indhira, M. Fabrication and assessment of reinforced ceramic electrical insulator from bamboo leaf ash waste. J. Alloys Compd. 2020, 2020, 153703. [Google Scholar] [CrossRef]
- Kokkinaki, O.; Klini, A.; Polychronaki, M.; Mavrikakis, N.C.; Siderakis, K.G.; Koudoumas, E.; Anglos, D. Assessing the type and quality of high voltage composite outdoor insulators by remote laser-induced breakdown spectroscopy analysis: A feasibility study. Spectrochim. Acta-Part B At. Spectrosc. 2020, 165, 105768. [Google Scholar] [CrossRef]
- Abd-Rahman, R.; Haddad, A.; Harid, N.; Griffiths, H. Stress control on polymeric outdoor insulators using zinc oxide microvaristor composites. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 705–713. [Google Scholar] [CrossRef]
- Sanyal, S.; Aslam, F.; Kim, T.; Jeon, S.; Lee, Y.-J.; Yi, J.; Koo, J.-B. Deterioration of porcelain insulators utilized in overhead transmission lines: A review. Trans. Electr. Electron. Mater. 2020, 21, 16–21. [Google Scholar] [CrossRef]
- Zhang, X.; Gockenbach, E. Asset-management of transformers based on condition monitoring and standard diagnosis. IEEE Electr. Insul. Mag. 2008, 24, 26–40. [Google Scholar] [CrossRef]
- Schneider, J.; Gaul, A.J.; Neumann, C.; Hogräfer, J.; Wellßow, W.; Schwan, M.; Schnettler, A. Asset management techniques. Int. J. Electr. Power Energy Syst. 2006, 28, 643–654. [Google Scholar] [CrossRef] [Green Version]
- García-López, F.D.P.; Barragán-Villarejo, M.; Maza-Ortega, J.M. Grid-friendly integration of electric vehicle fast charging station based on multiterminal DC link. Int. J. Electr. Power Energy Syst. 2020, 114, 105341. [Google Scholar] [CrossRef]
- Delille, G.; François, B.; Malarange, G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 2012, 3, 931–939. [Google Scholar] [CrossRef]
- Morsi, W.G. Electronic reactive energy meters’ performance evaluation in environment contaminated with power quality disturbances. Electr. Power Syst. Res. 2012, 84, 201–205. [Google Scholar] [CrossRef]
- Oliveira, L.T.S.; De Oliveira, R.F.B.; Macedo, J.R.; Xavier, G.L. Performance analisys of active energy meters in non-sinusoidal conditions. In Proceedings of the SBSE 2018—7th Brazilian Electrical Systems Symposium, Sao Paulo, Brazil, 22–25 October 2018; pp. 1–6. [Google Scholar]
- Masri, S.; Khairunaz, M.D.; Mamat, M.N. Study of electronic energy meter performance under harmonics current condition. Lect. Notes Electr. Eng. 2019, 547, 449–456. [Google Scholar]
- Lu, Z.; Li, M.; Zhu, Z.; Zheng, J.; Wang, L.; So, E. Evaluation of the dynamic performance characteristic of electrical energy meters. In Proceedings of the Conference on Precision Electromagnetic Measurements, Washington, DC, USA, 1–6 July 2012; pp. 120–121. [Google Scholar]
- Bartolomei, L.; Mingotti, A.; Pasini, G.; Peretto, L.; Rinaldi, P.; Tinarelli, R.; Puddu, L. Performance evaluation of an energy meter for low-voltage system monitoring. J. Phys. Conf. Ser. 2018, 1065, 052032. [Google Scholar] [CrossRef] [Green Version]
- Bartolomei, L.; Cavaliere, D.; Mingotti, A.; Peretto, L.; Tinarelli, R. Testing of electrical energy meters in off-nominal frequency conditions. In Proceedings of the 10th IEEE International Workshop on Applied Measurements for Power Systems, Bari, Italy, 6–9 October 2019. [Google Scholar]
- López, J.; Gubía, E.; Sanchis, P.; Roboam, X.; Marroyo, L. Wind turbines based on doubly fed induction generator under asymmetrical voltage dips. IEEE Trans. Energy Convers. 2008, 23, 321–330. [Google Scholar] [CrossRef]
- Mottola, F.; Proto, D.; Varilone, P.; Verde, P. Planning of distributed energy storage systems in µgrids accounting for voltage dips. Energies 2020, 13, 401. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, B.N.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D.P. A review of three-phase improved power quality ac-dc converters. IEEE Trans. Ind. Electron. 2004, 51, 641–660. [Google Scholar] [CrossRef]
- Newman, M.J.; Holmes, D.G.; Nielsen, J.G.; Blaabjerg, F. A dynamic voltage restorer (DVR) with selective harmonic compensation at medium voltage level. IEEE Trans. Ind. Appl. 2005, 41, 1744–1753. [Google Scholar] [CrossRef]
- Garcia Franquelo, L.; Nápoles, J.; Portillio Guisado, R.C.; Leon, J.I.; Aguirre, M.A. A flexible selective harmonic mitigation technique to meet grid codes in three-level PWM converters. IEEE Trans. Ind. Electron. 2007, 54, 3022–3029. [Google Scholar] [CrossRef]
- Sahoo, B.; Routray, S.K.; Rout, P.K. A novel control strategy based on hybrid instantaneous theory decoupled approach for PQ improvement in PV systems with energy storage devices and cascaded multi-level inverter. Sadhana Acad. Proc. Eng. Sci. 2020, 45, 1–13. [Google Scholar] [CrossRef]
- Barutcu, I.C.; Karatepe, E.; Boztepe, M. Impact of harmonic limits on PV penetration levels in unbalanced distribution networks considering load and irradiance uncertainty. Int. J. Electr. Power Energy Syst. 2020, 118, 105780. [Google Scholar] [CrossRef]
- Leferink, F.; Keyer, C.; Melentjev, A. Static energy meter errors caused by conducted electromagnetic interference. IEEE Electromagn. Compat. Mag. 2016, 5, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Adhau, A.A.; Patel, N.M.; Zaidy, A.T.; Patil, S.L.; Deshpande, A.S. Low cost electricity meter reading system using GSM. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2013, Nagercoil, India, 10–12 April 2013; pp. 1251–1255. [Google Scholar]
- Rietveld, G.; Sloot, W.; So, E.; Guo, X.; Mubarak, F.; De Geus, J.; Koers, F. Performance evaluation of HV CTs subjected to actual operating conditions in substations and its impact on smart metering infrastructure within smart grids. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Mingotti, A.; Peretto, L.; Tinarelli, R. Low power voltage transformer accuracy class effects on the residual voltage measurement. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Mingotti, A.; Peretto, L.; Tinarelli, R. A novel equivalent power network impedance approach for assessing the time reference in asynchronous measurements. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Torino, Italy, 22–25 May 2017. [Google Scholar]
- Mingotti, A.; Peretto, L.; Tinarelli, R. An equivalent synchronization for phasor measurements in power networks. In Proceedings of the AMPS 2017—IEEE International Workshop on Applied Measurements for Power Systems, Liverpool, UK, 20–22 September 2017. [Google Scholar]
- Zhang, M.; Li, K.; Wang, J.; He, S. An on-site calibration system for electronic instrument transformers based on LabVIEW. Metrol. Meas. Syst. 2014, 21, 257–270. [Google Scholar] [CrossRef]
- Nicorescu, H.; Eremia, M.; Albu, M. On the impact of winding selection of current instrument transformers for PMU measurements. In Proceedings of the 11th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2019, Bucharest, Romania, 28–30 March 2019. [Google Scholar]
- Cundeva-Blajer, M. Optimization methods in metrology of electrical quantities. In Proceedings of the XXI IMEKO World Congress “Measurement in Research and Industry”, Prague, Czech Republic, 30 August–4 September 2015. [Google Scholar]
- Topolskiy, D.V.; Yumagulov, N.I.; Galiyev, A.L. Development of technical solutions for digital substations using digital instrument combined current and voltage transformers. In Proceedings of the 2018 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2018, Moscow, Russia, 15–18 May 2018. [Google Scholar]
- Kaczmarek, M.; Stano, E. Proposal for extension of routine tests of the inductive current transformers to evaluation of transformation accuracy of higher harmonics. Int. J. Electr. Power Energy Syst. 2019, 113, 842–849. [Google Scholar] [CrossRef]
- Ballal, M.S.; Wath, M.G.; Suryawanshi, H.M. A novel approach for the error correction of ct in the presence of harmonic distortion. IEEE Trans. Instrum. Meas. 2019, 68, 4015–4027. [Google Scholar] [CrossRef]
- Halder, T. An impact of current voltage harmonics in the power quality issues. In Proceedings of the 3rd International Conference on 2019 Devices for Integrated Circuit, DevIC 2019, Kalyani, India, 23–24 March 2019; pp. 418–423. [Google Scholar]
- Faifer, M.; Laurano, C.; Ottoboni, R.; Toscani, S.; Zanoni, M. Harmonic distortion compensation in voltage transformers for improved power quality measurements. IEEE Trans. Instrum. Meas. 2019, 68, 3823–3830. [Google Scholar] [CrossRef]
- Campos, A.C.S.P.; Cardoso, K.R.; Cruz, V.P.; Fortes, M.Z. Frequency response of capacitive voltage dividers for evaluation of harmonic components. In Proceedings of the 2019 IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Latin America, Gramado, Brazil, 15–18 September 2019. [Google Scholar]
- Locci, N.; Muscas, C.; Sulis, S. Experimental comparison of MV voltage transducers for power quality applications. In Proceedings of the IEEE Intrumentation and Measurement Technology Conference, I2MTC 2009, Singapore, 5–7 May 2009; pp. 92–97. [Google Scholar]
- D’Avanzo, G.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Impact of inductive current transformers on synchrophasor measurement in presence of modulations. Meas. J. Int. Meas. Confed. 2020, 155, 107535. [Google Scholar] [CrossRef]
- De Capua, C.; Landi, C.; Malafronte, G.C. Measurement uncertainty in evaluating total harmonic distortion factor. In Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), Budapest, Hungary, 21–23 May 2001; pp. 675–679. [Google Scholar]
- ISO/IEC Guide 98-3: 2008. Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995); International Standardization Organization: Geneva, Switzerland, 2008. [Google Scholar]
- de Capua, C.; Romeo, E. A Smart THD Meter Performing an Original Uncertainty Evaluation Procedure. IEEE Trans. Instrum. Meas. 2007, 56, 1257–1264. [Google Scholar] [CrossRef]
- Gasch, E.; Domagk, M.; Stiegler, R.; Meyer, J. Uncertainty Evaluation for the Impact of Measurement Accuracy on Power Quality Parameters. In Proceedings of the 2017 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Liverpool, UK, 20–22 September 2017; pp. 1–6. [Google Scholar]
- Masnicki, R. Validation of the Measurement Characteristics in an Instrument for Power Quality Estimation—A Case Study. Energies 2017, 10, 536. [Google Scholar] [CrossRef]
- IEC 60050:2017. International Electrotechnical Vocabulary (IEV); IEC: Geneva, Switzerland, 2017. [Google Scholar]
- EN 50160:2011. Voltage Characteristics of Electricity Supplied by Public Electricity Networks; European committee for standardization: Brussels, Belgium, 2017. [Google Scholar]
- IEEE Std. 519-2014. Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 2014. [Google Scholar]
- IEC 61000-4-7:2002+AMD1:2008. Electromagnetic Compatibility (EMC)—Part 4-7: Testing and Measurement Techniques—General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto; International Standardization Organization: Geneva, Switzerland, 2002. [Google Scholar]
- IEC 61000-4-30:2015. Electromagnetic Compatibility (EMC)—Part 4-30: Testing and Measurement Techniques—Power Quality Measurement Methods; International Standardization Organization: Geneva, Switzerland, 2015. [Google Scholar]
- IEC 61869-6: 2016. Instrument Transformers—Part 6: Additional General Requirements for Low-Power Instrument Transformers; International Standardization Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rouaud, M. Probability, Statistics and Estimation; Creative Commons: Mountain View, CA, USA, 2013; pp. 52–57. [Google Scholar]
- Díaz-Francés, E.; Rubio, F.J. On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables. Stat. Pap. 2013, 54, 309–323. [Google Scholar] [CrossRef]
- Laurenson, D. Nakagami Distribution. Indoor Radio Channel Propagation Modelling by Ray Tracing Techniques. 1994. Available online: https://www.era.lib.ed.ac.uk/bitstream/handle/1842/12397/Laurensen1994.Pdf?sequence=1&isAllowed=y (accessed on 25 February 2020).
- Steffensen, J.F. Interpolation, 2nd ed.; Dover Publications: Mineola, NY, USA, 1950; p. 8. ISBN 0-486-45009-0. [Google Scholar]
- Supplement 1 BIPM JCGM 101:2008. Evaluation of Measurement Data—Supplement 1 to the Guide to the Expression of Uncertainty in Measurement—Propagation of Distributions Using a Monte Carlo Method; International Standardization Organization: Geneva, Switzerland, 2008. [Google Scholar]
Odd Harmonics | Even Harmonics | ||||
---|---|---|---|---|---|
Not Multiples of 3 | Multiples of 3 | ||||
Order | Relative Amplitude | Order | Relative Amplitude | Order | Relative Amplitude |
3 | 6.0% | 3 | 5.0% | 2 | 2.0% |
7 | 5.0% | 9 | 1.5% | 4 | 1.0% |
11 | 3.5% | 15 | 0.5% | 6 to 24 | 0.5% |
13 | 3.0% | 21 | 0.5% | ||
17 | 2.0% | ||||
19 | 1.5% | ||||
23 | 1.5% | ||||
25 | 1.5% |
Accuracy Class | Ratio Error [%] | |||
---|---|---|---|---|
50 Hz | 0.1 to 1 kHz | 1 to 1.5 kHz | 1.5 to 3 kHz | |
0.1 | ||||
0.2 | ||||
0.5 | ||||
1 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.0235 | 0.0235 | 1.06 | 1.05 | 1.0 | 1.0 |
0.2 | 0.0235 | 0.0236 | 4.23 | 4.19 | 2.1 | 2.0 | |
0.5 | 0.0235 | 0.0241 | 2.64 | 2.49 | 5.1 | 5.0 | |
G | 0.1 | 0.096 | 0.096 | 9.66 | 9.64 | 3.1 | 3.1 |
0.2 | 0.0957 | 0.0958 | 3.86 | 3.85 | 6.2 | 6.2 | |
0.5 | 0.096 | 0.097 | 2.41 | 2.37 | 1.6 | 1.5 | |
H | 0.1 | 0.108 | 0.108 | 8.43 | 8.41 | 2.9 | 2.9 |
0.2 | 0.1078 | 0.1080 | 3.37 | 3.36 | 5.8 | 5.8 | |
0.5 | 0.108 | 0.109 | 2.10 | 2.06 | 1.4 | 1.4 |
Signal | AC | (-) |
---|---|---|
F | 0.1 | 4.4 |
0.2 | 8.7 | |
0.5 | 2.1 | |
G | 0.1 | 3.2 |
0.2 | ||
0.5 | 1.6 | |
H | 0.1 | 2.7 |
0.2 | 5.4 | |
0.5 | 1.3 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.0235 | 0.0241 | 2.60 | 2.45 | 5.1 | 4.9 |
0.2 | 0.0235 | 0.0241 | 2.60 | 2.45 | 5.1 | 5.0 | |
0.5 | 0.0235 | 0.0241 | 2.64 | 2.49 | 5.1 | 5.0 | |
G | 0.1 | 0.096 | 0.097 | 2.34 | 2.30 | 1.5 | 1.5 |
0.2 | 0.096 | 0.097 | 2.34 | 2.31 | 1.5 | 1.5 | |
0.5 | 0.096 | 0.097 | 2.41 | 2.37 | 1.6 | 1.5 | |
H | 0.1 | 0.108 | 0.109 | 2.01 | 1.97 | 1.4 | 1.4 |
0.2 | 0.108 | 0.109 | 2.02 | 1.98 | 1.4 | 1.4 | |
0.5 | 0.108 | 0.109 | 2.10 | 2.06 | 1.4 | 1.4 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.02345 | 0.02346 | 2.78 | 2.78 | 5.3 | 5.3 |
0.2 | 0.02345 | 0.02346 | 3.33 | 3.33 | 5.8 | 5.8 | |
0.5 | 0.02345 | 0.02346 | 7.16 | 7.18 | 8.5 | 8.5 | |
G | 0.1 | 0.0957 | 0.0957 | 2.64 | 2.64 | 1.6 | 1.6 |
0.2 | 0.0957 | 0.0957 | 3.55 | 3.55 | 1.9 | 1.9 | |
0.5 | 0.0957 | 0.0957 | 9.95 | 9.96 | 3.2 | 3.2 | |
H | 0.1 | 0.1078 | 0.1078 | 2.39 | 2.39 | 1 . | 1.5 |
0.2 | 0.1078 | 0.1078 | 3.55 | 3.56 | 1.9 | 1.9 | |
0.5 | 0.1078 | 0.1078 | 1.17 | 1.17 | 3.4 | 3.4 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.100 | 0.100 | 8.65 | 8.66 | 2.9 | 2.9 |
0.2 | 0.100 | 0.100 | 3.47 | 3.46 | 5.9 | 5.9 | |
0.5 | 0.100 | 0.101 | 2.17 | 2.13 | 1.5 | 1.5 | |
G | 0.1 | 0.132 | 0.132 | 8.90 | 8.91 | 3.0 | 3.0 |
0.2 | 0.132 | 0.132 | 3.57 | 3.56 | 6.0 | 6.0 | |
0.5 | 0.132 | 0.133 | 2.23 | 2.20 | 1.5 | 1.5 | |
H | 0.1 | 0.194 | 0.194 | 9.59 | 9.58 | 3.1 | 3.1 |
0.2 | 0.1937 | 0.1939 | 3.84 | 3.83 | 6.2 | 6.2 | |
0.5 | 0.194 | 0.195 | 2.40 | 2.37 | 1.5 | 1.5 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.0400 | 0.0400 | 1.38 | 1.38 | 1.2 | 1.2 |
0.2 | 0.0400 | 0.0401 | 5.56 | 5.51 | 2.4 | 2.3 | |
0.5 | 0.0400 | 0.0408 | 3.47 | 3.34 | 5.9 | 5.8 | |
G | 0.1 | 0.0529 | 0.0530 | 1.42 | 1.42 | 1.2 | 1.2 |
0.2 | 0.0529 | 0.0531 | 5.72 | 5.67 | 2.4 | 2.4 | |
0.5 | 0.0529 | 0.0540 | 3.57 | 3.44 | 6.0 | 5.9 | |
H | 0.1 | 0.077 | 0.078 | 1.53 | 1.53 | 1.2 | 1.2 |
0.2 | 0.0775 | 0.0777 | 6.13 | 6.10 | 2.5 | 2.5 | |
0.5 | 0.077 | 0.079 | 3.84 | 3.72 | 6.2 | 6.1 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
F | 0.1 | 0.0100 | 0.0100 | 8.68 | 8.61 | 2.9 | 2.9 |
0.2 | 0.0100 | 0.0101 | 3.46 | 3.38 | 5.9 | 5.8 | |
0.5 | 0.0100 | 0.0108 | 2.17 | 1.88 | 1.5 | 1.4 | |
G | 0.1 | 0.0132 | 0.0133 | 8.91 | 8.87 | 3.0 | 3.0 |
0.2 | 0.0132 | 0.0134 | 3.56 | 3.49 | 6.0 | 5.9 | |
0.5 | 0.0132 | 0.0143 | 2.23 | 1.96 | 1.5 | 1.4 | |
H | 0.1 | 0.019 | 0.019 | 9.59 | 9.54 | 3.1 | 3.1 |
0.2 | 0.0194 | 0.0196 | 3.83 | 3.76 | 6.2 | 6.1 | |
0.5 | 0.019 | 0.021 | 2.39 | 2.15 | 1.5 | 1.5 |
Signal | AC | 5% Amplitude | 2% Amplitude | 0.5% Amplitude |
---|---|---|---|---|
(-) | (-) | (-) | ||
F | 0.1 | 2.9 | 2.9 | 2.9 |
0.2 | 5.9 | 5.9 | 5.7 | |
0.5 | 1.4 | 1.4 | 1.3 | |
G | 0.1 | 2.3 | 2.3 | 2.2 |
0.2 | ||||
0.5 | 1.1 | 1.1 | 9.8 | |
H | 0.1 | 1.6 | 1.6 | 1.6 |
0.2 | 3.2 | 3.2 | 3.1 | |
0.5 | 7.9 | 7.7 | 7.0 |
Signal | AC | ||
---|---|---|---|
(-) | (-) | ||
F | 0.1 | 2.9 | 5.8 |
0.2 | 5.5 | 1.2 | |
0.5 | 9.0 | 2.8 | |
G | 0.1 | 2.6 | 5.7 |
0.2 | 5.0 | 1.1 | |
0.5 | 1.0 | 2.8 | |
H | 0.1 | 2.2 | 5.5 |
0.2 | 4.2 | 1.1 | |
0.5 | 9.6 | 2.6 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
I | 0.1 | 0.1109 | 0.1110 | 8.07 | 8.05 | 2.8 | 2.8 |
0.2 | 0.1109 | 0.1111 | 3.22 | 3.21 | 5.7 | 5.7 | |
0.5 | 0.111 | 0.112 | 2.01 | 1.97 | 1.4 | 1.4 | |
L | 0.1 | 0.1132 | 0.1133 | 7.89 | 7.86 | 2.8 | 2.8 |
0.2 | 0.1133 | 0.1136 | 3.14 | 3.13 | 5.6 | 5.6 | |
0.5 | 0.113 | 0.115 | 1.97 | 1.91 | 1.4 | 1.4 |
Signal | AC | (-) | (-) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|
L | 0.1 | 0.1132 | 0.1133 | 7.78 | 7.78 | 2.8 | 2.8 |
0.2 | 0.1133 | 0.1135 | 3.11 | 3.10 | 5.6 | 5.6 | |
0.5 | 0.113 | 0.115 | 1.95 | 1.90 | 1.4 | 1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mingotti, A.; Peretto, L.; Tinarelli, R. A Closed-form Expression to Estimate the Uncertainty of THD Starting from the LPIT Accuracy Class. Sensors 2020, 20, 1804. https://doi.org/10.3390/s20061804
Mingotti A, Peretto L, Tinarelli R. A Closed-form Expression to Estimate the Uncertainty of THD Starting from the LPIT Accuracy Class. Sensors. 2020; 20(6):1804. https://doi.org/10.3390/s20061804
Chicago/Turabian StyleMingotti, Alessandro, Lorenzo Peretto, and Roberto Tinarelli. 2020. "A Closed-form Expression to Estimate the Uncertainty of THD Starting from the LPIT Accuracy Class" Sensors 20, no. 6: 1804. https://doi.org/10.3390/s20061804
APA StyleMingotti, A., Peretto, L., & Tinarelli, R. (2020). A Closed-form Expression to Estimate the Uncertainty of THD Starting from the LPIT Accuracy Class. Sensors, 20(6), 1804. https://doi.org/10.3390/s20061804