A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies
Abstract
:1. Introduction
- (1)
- From the overall framework, the features of small targets can be well represented. Compared with the state-of-the-art methods, this paper not only introduces a decoder, but the classification module with continuous down samplings and convolutions are replaced only by calculating the pixel average values of segmentation outputs, which decreases the information loss of small targets.
- (2)
- Coarse and fine background suppression modules are designed at the decoder of the segmentation network, which expands the feature difference between positive and negative samples. To the best of our knowledge, a module designed with iterative multiplication in fine background suppression method has not been available before.
- (3)
- Due to the absence of a complex optimization process and learning parameters for the classification module in this paper, the work load is lightened for industrial tasks.
2. Materials and Methods
2.1. Overview
2.2. Segmentation Module
2.2.1. Encode-Decoder Network
2.2.2. Coarse Background Suppression
2.2.3. Fine Background Suppression
2.3. Classification Module
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yun, J.P.; Kim, D.; Kim, K.; Lee, S.J.; Park, C.H.; Kim, S.W. Vision-based surface defect inspection for thick steel plates. Opt. Eng. 2017, 56, 053108. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, M.; Xiang, F.; Feng, Q. Modeling and recognition of steel-plate surface defects based on a new backward boosting algorithm. Int. J. Adv. Manuf. Tech. 2018, 94, 4317–4328. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Kim, J.M. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network. Sensors 2019, 19, 4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf. 2019, 31, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Chen, C.; Liang, J.; Hou, Z. Fabric defect inspection based on lattice segmentation and Gabor filtering. Neurocomputing 2017, 238, 84–102. [Google Scholar] [CrossRef]
- Mei, S.; Wang, Y.; Wen, G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 2018, 18, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Chaudhuri, S.; Dutta, P.K.; Sen, S.; Patra, A. An object-based coding scheme for frontal surface of defective fluted ingot. ISA Trans. 2006, 45, 1–8. [Google Scholar] [CrossRef]
- Shumin, D.; Zhoufeng, L.; Chunlei, L. Adaboost Learning for Fabric Defect Detection Based on Hog and SVM. In Proceedings of the IEEE International Conference on Multimedia Technology (ICMT), Hangzhong, China, 26–28 July 2011; pp. 2903–2906. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J.; Fricout, G. Steel Defect Classification with Max-Pooling Convolutional Neural Networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–6. [Google Scholar]
- Natarajan, V.; Hung, T.Y.; Vaikundam, S.; Chia, L.T. Convolutional Networks for Voting-Based Anomaly Classification in Metal Surface Inspection. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 986–991. [Google Scholar]
- García, D.F.; García, I.; Usamentiaga, R. A Configuration Approach for Convolutional Neural Networks Used for Defect Detection on Surfaces. In Proceedings of the IEEE International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Corfu Island, Greece, 25–27 August 2018; pp. 44–51. [Google Scholar]
- Youkachen, S.; Ruchanurucks, M.; Phatrapomnant, T.; Kaneko, H. Defect Segmentation of Hot-rolled Steel Strip Surface by Using Convolutional Auto-Encoder and Conventional Image Processing. In Proceedings of the IEEE International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Bangkok, Thailand, 25–27 March 2019; pp. 1–5. [Google Scholar]
- Jing, J.F.; Ma, H.; Zhang, H.H. Automatic fabric defect detection using a deep convolutional neural network. Color. Technol. 2019, 135, 213–223. [Google Scholar] [CrossRef]
- Racki, D.; Tomazevic, D.; Skocaj, D. A Compact Convolutional Neural Network for Textured Surface Anomaly Detection. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, CA, USA, 12–15 March 2018; pp. 1331–1339. [Google Scholar]
- Song, Z.Y.; Yuan, Z.J.; Liu, T. Residual Squeeze-and-Excitation Network for Battery Cell Surface Inspection. In Proceedings of the International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27–31 May 2019; pp. 1–5. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achanta, R.; Hemami, S.; Estrada, F.; Süsstrunk, S. Frequency-Tuned Salient Region Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Yang, N.; Guo, L.; Guo, S.; Chen, Z. A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies. Sensors 2020, 20, 1829. https://doi.org/10.3390/s20071829
Liu G, Yang N, Guo L, Guo S, Chen Z. A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies. Sensors. 2020; 20(7):1829. https://doi.org/10.3390/s20071829
Chicago/Turabian StyleLiu, Gaokai, Ning Yang, Lei Guo, Shiping Guo, and Zhi Chen. 2020. "A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies" Sensors 20, no. 7: 1829. https://doi.org/10.3390/s20071829
APA StyleLiu, G., Yang, N., Guo, L., Guo, S., & Chen, Z. (2020). A One-Stage Approach for Surface Anomaly Detection with Background Suppression Strategies. Sensors, 20(7), 1829. https://doi.org/10.3390/s20071829