DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedures
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuro Eng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.; King, L.; Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015, 95, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Horak, F.B.; Mancini, M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Trojaniello, D.; Ravaschio, A.; Hausdorff, J.M.; Cereatti, A. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. Gait Posture 2015, 42, 310–316. [Google Scholar] [CrossRef]
- Van Den Noort, J.C.; Ferrari, A.; Cutti, A.G.; Becher, J.G.; Harlaar, J. Gait analysis in children with cerebral palsy via inertial and magnetic sensors. Med. Biol. Eng. Comput. 2013, 51, 377–386. [Google Scholar] [CrossRef]
- Ertzgaard, P.; Öhberg, F.; Gerdle, B.; Grip, H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors–A validity study. Manual. Ther. 2016, 21, 241–249. [Google Scholar] [CrossRef]
- Li, H.T.; Huang, J.J.; Pan, C.W.; Chi, H.I.; Pan, M.C. Inertial sensing based assessment methods to quantify the effectiveness of post-stroke rehabilitation. Sensors 2015, 15, 16196–16209. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, R.J.; Janssen-Potten, Y.J.; Timmermans, A.A.; Smeets, R.J.; Seelen, H.A. Recognizing Complex Upper Extremity Activities Using Body Worn Sensors. PLoS ONE 2015, 10, e0118642. [Google Scholar] [CrossRef] [Green Version]
- Portnoy, S.; Halaby, O.; Dekel-Chen, D.; Dierick, F. Effect of an auditory feedback substitution, tactilo-kinesthetic, or visual feedback on kinematics of pouring water from kettle into cup. Appl. Ergon. 2015, 51, 44–49. [Google Scholar] [CrossRef]
- Kadomura, A.; Li, C.Y.; Chen, Y.C.; Tsukada, K.; Siio, I.; Chu, H.H. Sensing fork: Eating behavior detection utensil and mobile persuasive game. In CHI’13 Extended Abstracts on Human Factors in Computing Systems; ACM: New York, NY, USA, 2013; pp. 1551–1556. [Google Scholar]
- Chia, F.-Y.; Saakes, D. Interactive training chopsticks to improve fine motor skills. In Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, Funchal, Portugal, 11–14 November 2014; ACM: New York, NY, USA, 2014; p. 57. [Google Scholar]
- Zuckerman, O.; Slyper, R.; Keren-Capelovitch, T.; Gal-Oz, A.; Gal, T.; Weiss, P.L. Assisting Caregivers of Children with Cerebral Palsy: Towards a Self-Feeding Assessment Spoon. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, Stanford, CA, USA, 15–19 January 2015; ACM: New York, NY, USA, 2015; pp. 557–562. [Google Scholar]
- Zuckerman, O.; Gal, T.; Keren-Capelovitch, T.; Karsovsky, T.; Gal-Oz, A.; Weiss, P.L.T. DataSpoon: Overcoming Design Challenges in Tangible and Embedded Assistive Technologies. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, Eindhoven The Netherlands, 14–17 February 2016; ACM: New York, NY, USA, 2016; pp. 30–37. [Google Scholar]
- Henderson, A. Self-care and hand skill. In Hand Function in the Child; Elsevier: Amsterdam, The Netherlands, 2006; pp. 193–216. [Google Scholar]
- Ma, H.I.; Hwang, W.J.; Chen-Sea, M.J.; Sheu, C.F. Handle size as a task constraint in spoon-use movement in patients with Parkinson’s disease. Clin. Rehabil. 2008, 22, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Demartino, A.M.; Rodrigues, L.C.; Gomes, R.P.; Michaelsen, S.M. Hand function and type of grasp used by chronic stroke individuals in actual environment. Top. Stroke Rehabil. 2019, 26, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, V.; Santos, M.J.; Ko, M.; Aruin, A.S. Grip Force Control in Individuals With Multiple Sclerosis. Neurorehabil. Neural Repair 2009, 23, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Roon, D.; Steenbergen, B. The use of ergonomic spoons by people with cerebral palsy: Effects on food spilling and movement kinematics. Dev. Med. Child Neurol. 2006, 48, 888–891. [Google Scholar] [CrossRef]
- Artilheiro, M.C.; Correa, J.C.F.; Cimolin, V.; Lima, M.O.; Galli, M.; de Godoy, W.; Lucareli, P.R.G. Three-dimensional analysis of performance of an upper limb functional task among adults with dyskinetic cerebral palsy. Gait Posture 2014, 39, 875–881. [Google Scholar] [CrossRef]
- Van Roon, D.; van der Kemp, J.; Steenbergen, B. (Eds.) Constraints in children’s learning to use spoons. In Development of Movement Coordination in Children: Applications in the Field of Ergonomics, Health Sciences and Sport; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Roon, D.; van Steenbergen, B.; Meulenbroek, R.G.J. Trunk recruitment during spoon use in tetraparetic cerebral palsy. Exp. Brain Res. 2003, 55, 186–195. [Google Scholar]
- Keren-Capelovitch, T.; Krasovsky, T.; Friedman, J.; Weiss, P.T. Identifying Kinematics of Self-Feeding by Young Children: Foundation for Assessment Using an Instrumented Spoon. Arch. Phys. Med. Rehabil. 2019, 100, e83. [Google Scholar] [CrossRef]
- de los Reyes-Guzmán, A.; Dimbwadyo-Terrer, I.; Trincado-Alonso, F.; Monasterio-Huelin, F.; Torricelli, D.; Gil-Agudo, A. Quantitative assessment based on kinematic measures of functional impairments during upper extremity movements: A review. Clin. Biomech. 2014, 29, 719–727. [Google Scholar] [CrossRef] [Green Version]
- van Roon, D.; van der Kamp, J.; Steenbergen, B. Learning to use spoons. In Development of Movement Coordination in Children; Routledge: Abingdon, UK, 2003; p. 75. [Google Scholar]
- Steenbergen, B.; Van der Kamp, J.; Smithsman, A.W.; Carson, R.G. Spoon Handling in Two-to-Four-Year-Old Children. Ecol. Psychol. 1997, 9, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Connolly, K.; Dalgleish, M. The emergence of a tool-using skill in infancy. Dev. Psychol. 1989, 25, 894–912. [Google Scholar] [CrossRef]
- Mackey, A.H.; Walt, S.E.; Stott, N.S. Deficits in Upper-Limb Task Performance in Children with Hemiplegic Cerebral Palsy as Defined by 3-Dimensional Kinematics. Arch. Phys. Med. Rehabil. 2006, 87, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cahill-Rowley, K.; Rose, J. Temporal–spatial reach parameters derived from inertial sensors: Comparison to 3D marker-based motion capture. J. Biomech. 2017, 52, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef] [PubMed]
- Cirstea, M.; Levin, M.F. Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neuro Rehabil. Neural Repair 2007, 21, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Brochard, S.; Robertson, J.; Medee, B.; Remy-Neris, O. What’s new in new technologies for upper extremity rehabilitation? Curr. Opin. Neurol. 2010, 23, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S.; Parush, S.; Weiss, P.L. Computerized temporal handwriting characteristics of proficient and non-proficient handwriters. Am. J. Occup. Ther. 2003, 57, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Korman, M. Offline optimization of the relative timing of movements in a sequence is blocked by retroactive behavioral interference. Front. Hum. Neurosci. 2016, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Bullock, I.M.; Feix, T.; Dollar, A.M. Analyzing human fingertip usage in dexterous precision manipulation: Implications for robotic finger design. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1622–1628. [Google Scholar]
GemSense Red Amber (Including Battery Extension) | Ascension trakSTAR System with Model 180 Sensor | |
---|---|---|
Size | 24 mm diameter | 2 mm diameter, 9.9 mm length (not including cable) |
Mass | 25 g | <5 g (not including cable) |
Accuracy | Not available | Position: 1.4 mm RMS, angle: 0.5° RMS |
Range | Dependent on Bluetooth (approx. 10 m) | 58 cm at highest accuracy level |
Approximate cost | USD 40 | USD 4000 (for a one-sensor setup) |
Sample rate | 50 Hz | 200 Hz (maximum is 255 Hz) |
Measure | Natural Grip | Power Grip | Rotated Power Grip | ||||||
---|---|---|---|---|---|---|---|---|---|
Slow | Comfortable | Fast | Slow | Comfortable | Fast | Slow | Comfortable | Fast | |
Duration of Movement to Mouth | 0.99 [0.99, 1.00] <0.01 | 0.99 [0.97, 0.99] <0.01 | 0.86 [0.66, 0.94] <0.01 | 0.95 [0.90, 0.98] <0.01 | 0.85 [0.66, 0.93] <0.01 | 0.86 [0.66, 0.94] <0.01 | 0.97 [0.92, 0.98] <0.01 | 0.98 [0.95, 0.99] <0.01 | 0.88 [0.77, 0.94] <0.01 |
Duration of Movement from Mouth | 0.87 [0.74, 0.94] <0.01 | 0.83 [0.89, 0.98] <0.01 | 0.55 [0.16, 0.79] <0.01 | 0.90 [0.79, 0.95] <0.01 | 0.88 [0.74, 0.94] <0.01 | 0.50 [0.06, 0.77] 0.02 | 0.95 [0.89, 0.98] <0.01 | 0.83 [0.67, 0.92] <0.01 | 0.89 [0.77, 0.95] <0.01 |
Duration of Movement (total) | 0.97 [0.93, 0.98] <0.01 | 0.99 [0.97, 0.99] <0.01 | 0.91 [0.80, 0.96] <0.01 | 0.94 [0.86, 0.97] <0.01 | 0.94 [0.87, 0.97] <0.01 | 0.87 [0.69, 0.95] <0.01 | 0.96 [0.89, 0.98] <0.01 | 0.94 [0.87, 0.97] <0.01 | 0.97 [0.93, 0.98] <0.01 |
Range of Pitch | 0.86 [0.70, 0.93] <0.01 | 0.81 [0.62, 0.91] <0.01 | 0.62 [0.27, 0.83] <0.01 | 0.75 [0.52, 0.88] <0.01 | 0.64 [0.32, 0.83] <0.01 | 0.90 [0.75, 0.96] <0.01 | 0.87 [0.73, 0.94] <0.01 | 0.92 [0.83, 0.96] <0.01 | 0.92 [0.84, 0.96] <0.01 |
Range of Roll | 0.93 [0.85, 0.97] <0.01 | 0.98 [0.96, 0.99] <0.01 | 0.50 [0.10, 0.76] 0.01 | 0.79 [0.58, 0.90] <0.01 | 0.97 [0.93, 0.99] <0.01 | 0.85 [0.65, 0.94] <0.01 | 0.95 [0.84, 0.98] <0.01 | 0.97 [0.94, 0.99] <0.01 | 0.94 [0.88, 0.97] <0.01 |
Peak Velocity to Mouth | 0.24 [−0.10, 0.59] <0.01 | 0.21 [−0.06, 0.57] <0.01 | 0.07 [−0.25, 0.43] 0.35 | 0.21 [−0.10, 0.52] 0.04 | 0.05 [−0.15, 0.32] 0.33 | 0.37 [−0.08, 0.71] <0.01 | 0.07 [−0.28, 0.42] 0.36 | −0.03 [−0.14, 0.16] 0.66 | 0.00 [−0.10, 0.16] 0.50 |
Peak Velocity Down | 0.07 [−0.10, 0.30] 0.21 | 0.09 [−0.05, 0.35] 0.01 | 0.06 [−0.07, 0.29] 0.16 | 0.06 [−0.07, 0.26] 0.16 | 0.07 [−0.07, 0.30] 0.11 | 0.28 [−0.11, 0.65] <0.01 | 0.10 [−0.09, 0.36] 0.12 | 0.07 [−0.08, 0.30] 0.13 | 0.08 [−0.08, 0.30] 0.13 |
Fluency - Acceleration Zero Crossing (total) | 0.14 [−0.26, 0.50] 0.25 | 0.41 [0.04, 0.68] <0.01 | 0.21 [−0.13, 0.54] 0.12 | 0.00 [−0.32, 0.35] 0.50 | 0.45 [0.07, 0.72] 0.01 | 0.26 [−0.21, 0.63] 0.14 | −0.11 [−0.48, 0.29] 0.70 | 0.36 [−0.02, 0.65] <0.01 | 0.14 [−0.13, 0.43] 0.15 |
Measure | Units | trakSTAR | DataSpoon | Mean Bias | 95% Limits of Agreement |
---|---|---|---|---|---|
Duration of Movement to Mouth | Seconds | 2.10 (0.71) | 2.20 (0.70) | −0.07 | [−0.51, 0.38] |
Duration of Movement from Mouth | Seconds | 1.32 (0.43) | 1.31 (0.53) | −0.01 | [−0.54, 0.53] |
Duration of Movement (total) | Seconds | 3.46 (0.91) | 3.51 (1.08) | −0.07 | [−0.63, 0.48] |
Range of Pitch | Degrees | 43.74 (21.79) | 45.60 (18.58) | −0.27 | [−23.47, 22.93] |
Range of Roll | Degrees | 54.95 (28.50) | 56.81 (27.37) | −1.32 | [−27.16, 24.51] |
Peak Velocity to Mouth | m/s | 0.42 (0.19) | 0.23 (0.13) | 0.18 | [−0.20, 0.56] |
Peak Velocity Down | m/s | 0.49 (0.31) | 0.19 (0.09) | 0.31 | [−0.07, 0.68] |
Fluency - Acceleration Zero Crossing (total) | Number | 4.67 (6.54) | 3.00 (3.33) | 1.8 | [−7.23, 10.82] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J. DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding. Sensors 2020, 20, 2114. https://doi.org/10.3390/s20072114
Krasovsky T, Weiss PL, Zuckerman O, Bar A, Keren-Capelovitch T, Friedman J. DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding. Sensors. 2020; 20(7):2114. https://doi.org/10.3390/s20072114
Chicago/Turabian StyleKrasovsky, Tal, Patrice L. Weiss, Oren Zuckerman, Avihay Bar, Tal Keren-Capelovitch, and Jason Friedman. 2020. "DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding" Sensors 20, no. 7: 2114. https://doi.org/10.3390/s20072114
APA StyleKrasovsky, T., Weiss, P. L., Zuckerman, O., Bar, A., Keren-Capelovitch, T., & Friedman, J. (2020). DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding. Sensors, 20(7), 2114. https://doi.org/10.3390/s20072114