An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Simulation Results
3.2. Theoretical Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N.; Irfan Khattak, M.; Junaid, M. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications. Sensors 2020, 20, 1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bründermann, E.; Hübers, H.; Kimmitt, M.F. Terahertz Techniques; Springer: Berlin, Germany, 2012. [Google Scholar]
- Kašalynas, I.; Venckevičius, R.; Minkevičius, L.; Sešek, A.; Wahaia, F.; Tamošiūnas, V.; Voisiat, B.; Seliuta, D.; Valušis, G.; Švigelj, A.; et al. Spectroscopic terahertz imaging at room temperature employing microbolometer terahertz sensors and its application to the study of carcinoma tissues. Sensors 2016, 16, 432. [Google Scholar] [CrossRef] [PubMed]
- Degl Innocenti, R.; Kindness, S.J.; Beere, H.E.; Ritchie, D.A. All-integrated terahertz modulators. Nanophotonics 2018, 7, 127–144. [Google Scholar] [CrossRef]
- Hack, E.; Valzania, L.; Gäumann, G.; Shalaby, M.; Hauri, C.; Zolliker, P. Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging. Sensors 2016, 16, 221. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, Y. Metasurfaces in terahertz waveband. J. Phys. D Appl. Phys. 2017, 50, 464004. [Google Scholar] [CrossRef] [Green Version]
- Puc, U.; Abina, A.; Jeglič, A.; Zidanšek, A.; Kašalynas, I.; Venckevičius, R.; Valušis, G. Spectroscopic analysis of melatonin in the terahertz frequency range. Sensors 2018, 18, 4098. [Google Scholar] [CrossRef] [Green Version]
- Alius, H.; Dodel, G. Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon. Infrared Phys. 1991, 32, 1–11. [Google Scholar] [CrossRef]
- Vogel, T.; Dodel, G.; Holzhauer, E.; Salzmann, H.; Theurer, A. High-speed switching of far-infrared radiation by photoionization in a semiconductor. Appl. Opt. 1992, 31, 329–337. [Google Scholar] [CrossRef]
- Okada, T.; Tanaka, K. Photo-designed terahertz devices. Sci. Rep. 2011, 1, 121. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Wang, X.; Ye, J.; Feng, S.; Sun, W.; Akalin, T.; Zhang, Y. Spatial terahertz modulator. Sci. Rep. 2013, 3, 3347. [Google Scholar] [CrossRef]
- Zhang, B.; Lv, L.; He, T.; Chen, T.; Zang, M.; Zhong, L.; Wang, X.; Shen, J.; Hou, Y. Active terahertz device based on optically controlled organometal halide perovskite. Appl. Phys. Lett. 2015, 107, 093301. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.J.; Liu, L. Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components. Opt. Express 2013, 21, 28657. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qiao, H.; Huangfu, H.; Li, X.; Guo, J.; Wang, H. Optical absorption of several nanostructures arrays for silicon solar cells. Opt. Commun. 2015, 356, 526–529. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Z.; Burkhard, G.F.; Hsu, C.M.; Connor, S.T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H.Y.; Wang, F.; Han, N.; Chan, K.S.; Wong, C.Y.; Ho, J.C. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 2014, 8, 3752–3760. [Google Scholar] [CrossRef]
- Li, G.; Kwok, H.S. Silicon nanowire solar cells. In Advances in Silicon Solar Cells; Ikhmayies, S., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 269–298. [Google Scholar]
- Shi, Z.; Cao, X.; Wen, Q.; Wen, T.; Yang, Q.; Chen, Z.; Shi, W.; Zhang, H. Terahertz modulators based on silicon nanotip array. Adv. Opt. Mater. 2018, 6, 1700620. [Google Scholar] [CrossRef]
- Wu, X.; Pan, X.; Quan, B.; Wang, L. Optical modulation of terahertz behavior in silicon with structured surfaces. Appl. Phys. Lett. 2013, 103, 121112. [Google Scholar] [CrossRef]
- Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L.; Spurgeon, J.M.; Briggs, R.M.; Lewis, N.S.; Atwater, H.A. Erratum: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239–244. [Google Scholar] [CrossRef]
- Kupec, J.; Stoop, R.L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589–27605. [Google Scholar] [CrossRef]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett 2010, 10, 1082–1087. [Google Scholar] [CrossRef]
- Jung, J.Y.; Guo, Z.; Jee, S.W.; Um, H.D.; Park, K.T.; Lee, J.H. A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express 2010, 18 (Suppl. S3), A286–A292. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lal, A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010, 10, 4651–4656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, M.; Chen, L.; Cai, B.; Yang, R.; Zhu, Y. Broadband terahertz anti-reflective structure fabricated by femtosecond laser drilling technique. Opt. Commun. 2016, 361, 148–152. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, T.; Cheng, X. Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets. Opt. Express 2017, 25, 16364–16377. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.F. Silicon (Si). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Auslender, M.; Hava, S. Doped n-Type Silicon (n-Si). In Handbook of Optical Constants of Solids III; Palik, E.D., Ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Jäger, S.T.; Strehle, S. Design parameters for enhanced photon absorption in vertically aligned silicon nanowire arrays. Nanoscale Res. Lett. 2014, 9, 511. [Google Scholar] [CrossRef]
- Butt, H.; Dai, Q.; Rajasekharan, R.; Wilkinson, T.D.; Amaratunga, G.A.J. Enhanced reflection from arrays of silicon based inverted nanocones. Appl. Phys. Lett. 2011, 99, 133105. [Google Scholar] [CrossRef]
- Li, Q.; Tian, Z.; Zhang, X.; Singh, R.; Du, L.; Gu, J.; Han, J.; Zhang, W. Active graphene–silicon hybrid diode for terahertz waves. Nat. Commun. 2015, 6, 7082. [Google Scholar] [CrossRef]
- Fan, Z.; Geng, Z.; Lv, X.; Su, Y.; Yang, Y.; Liu, J.; Chen, H. Optical controlled terahertz modulator based on tungsten disulfide nanosheet. Sci. Rep. 2017, 7, 14828. [Google Scholar] [CrossRef]
- Cao, Y.; Gan, S.; Geng, Z.; Liu, J.; Yang, Y.; Bao, Q.; Chen, H. Optically tuned terahertz modulator based on annealed multilayer MoS2. Sci. Rep. 2016, 6, 22899. [Google Scholar] [CrossRef]
- Chen, S.; Fan, F.; Miao, Y.; He, X.; Zhang, K.; Chang, S. Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets. Nanoscale 2016, 8, 4713–4719. [Google Scholar] [CrossRef]
- Green, M.A.; Keevers, M.J. Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. Res. Appl. 1995, 3, 189–192. [Google Scholar] [CrossRef]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energ Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Lee, C.; Lee, G.H.; Hone, J.; Heinz, T.F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Chan, W.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B 2016, 93, 045407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, H.; Chan, W.; Manolatou, C.; Rana, F. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory. Phys. Rev. B 2014, 89, 205436. [Google Scholar] [CrossRef] [Green Version]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Lowdermilk, W.H.; Milam, D. Graded-index antireflection surfaces for high-power laser applications. Appl. Phys. Lett. 1980, 36, 891–893. [Google Scholar] [CrossRef]
- Lin, G.R.; Meng, F.S.; Pai, Y.H.; Chang, Y.C.; Hsu, S.H. Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods. Opt. Express 2009, 17, 20824–20832. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Macleod, H.A. Thin-Film Optical Filter; Institute of Physics: London, UK, 2001. [Google Scholar]
Wavelength | Bare Silicon | Nanocylinder Structure | Nanotip Structure | Nanohole Structure |
---|---|---|---|---|
808 nm | 594 | 923 | 6253 | 4126 |
532 nm | 375 | 1704 | 1281 | 1965 |
Wavelength | Bare Silicon | Nanocylinder Structure | Nanotip Structure | Nanohole Structure |
---|---|---|---|---|
808 nm | 1.73 | 2.70 | 18.25 | 12.05 |
532 nm | 0.95 | 4.97 | 3.74 | 5.74 |
Wavelength | Bare Silicon | Nanocylinder Structure | Nanotip Structure | Nanohole Structure |
---|---|---|---|---|
808 nm | 51% | 51.63% | 9.13% | 9.69% |
532 nm | 63.18% | 36.41% | 42.44% | 23.96% |
Wavelength | Bare Silicon | Nanocylinder Structure | Nanotip Structure | Nanohole Structure |
---|---|---|---|---|
808 nm | 8.48% → 38.99% | 9.07% → 39.94% | 43.41% → 90.74% | 39.93% → 90.14% |
532 nm | 4.76% → 24.47% | 15.8% → 57.7% | 12.19% → 49.42% | 22.47% → 72.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, C.; Liu, J.; Wei, D.; Wu, H.; Wen, Q.; Ling, D. An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates. Sensors 2020, 20, 2198. https://doi.org/10.3390/s20082198
Mo C, Liu J, Wei D, Wu H, Wen Q, Ling D. An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates. Sensors. 2020; 20(8):2198. https://doi.org/10.3390/s20082198
Chicago/Turabian StyleMo, Chen, Jingbo Liu, Dongshan Wei, Honglei Wu, Qiye Wen, and Dongxiong Ling. 2020. "An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates" Sensors 20, no. 8: 2198. https://doi.org/10.3390/s20082198
APA StyleMo, C., Liu, J., Wei, D., Wu, H., Wen, Q., & Ling, D. (2020). An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates. Sensors, 20(8), 2198. https://doi.org/10.3390/s20082198