Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Level-Crossing A/D Converter (LCADC)
2.3. Activity Selection Algorithm (ASA)
2.4. Adaptive-Rate Resampling
2.5. Adaptive-Rate Denoising
2.6. Features Extraction
2.6.1. Adaptive-Rate Discrete Wavelet Transform (ARDWT)
2.6.2. Features
2.7. Classification Methods
2.7.1. k-Nearest Neighbors (k-NN)
2.7.2. Artificial Neural Network (ANN)
2.7.3. Support Vector Machines (SVMs)
2.7.4. Random Forest (RF)
2.7.5. Bagging (BG)
2.8. Performance Evaluation Metrics
2.8.1. Compression Ratio
2.8.2. Computational Complexity
- Filter selection for wasresolved by using the successive approximation algorithm. Therefore, resolving the value of for reference filters, in the worst case, requires comparisons [29].
- Resampling wasrealized by using the SLI. For , the complexity of SLI was additions and binary weighted right shifts. The complexity of binary weighted right shift wasnegligible compared to the addition and multiplication processes [49]. Therefore, it wasignored.
- The complexity of the order FIR filtering for samples could be calculated as: additions and · multiplications.
2.8.3. Classification Precision
Accuracy (Acc)
Normalized Mutual Information (NMI)
F-Measure (F1)
Kappa Index (Kappa)
Specificity (Sp)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Brenyo, A.; Aktas, M.K. Review of complementary and alternative medical treatment of arrhythmias. Am. J. Cardiol. 2014, 113, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mitra, M. Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 2013, 63, 326–333. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Howard, V.J. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation 2016, 133, e38–e48. [Google Scholar] [CrossRef] [PubMed]
- Hai, N.T.; Nguyen, N.T.; Nguyen, M.H.; Livatino, S. Wavelet-based kernel construction for heart disease classification. Adv. Electr. Electr. Eng. 2019, 17, 306–319. [Google Scholar] [CrossRef]
- Li, T.; Zhou, M. ECG classification using wavelet packet entropy and random forests. Entropy 2016, 18, 285. [Google Scholar] [CrossRef]
- Gutiérrez-Gnecchi, J.A.; Morfin-Magana, R.; Lorias-Espinoza, D.; del Carmen Tellez-Anguiano, A.; Reyes-Archundia, E.; Méndez-Patiño, A.; Castañeda-Miranda, R. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed. Signal Process. Control 2017, 32, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.R.; Pachori, R.B. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed. Signal Process. Control 2018, 45, 33–49. [Google Scholar] [CrossRef]
- Hesar, H.D.; Mohebbi, M. ECG denoising using marginalized particle extended kalman filter with an automatic particle weighting strategy. IEEE J. Biomed. Health Inform. 2016, 21, 635–644. [Google Scholar] [CrossRef]
- Singhal, A.; Singh, P.; Fatimah, B.; Pachori, R.B. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomed. Signal Process. Control 2020, 57, 101741. [Google Scholar] [CrossRef]
- Sahoo, S.; Kanungo, B.; Behera, S.; Sabut, S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017, 108, 55–66. [Google Scholar] [CrossRef]
- Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Martis, R.J.; Acharya, U.R.; Mandana, K.; Ray, A.; Chakraborty, C. Cardiac decision making using higher order spectra. Biomed. Signal Process. Control 2013, 8, 193–203. [Google Scholar] [CrossRef]
- Shadmand, S.; Mashouf, B. A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization. Biomed. Signal Process. Control 2016, 25, 12–23. [Google Scholar] [CrossRef]
- Zhang, X.; Lian, Y. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circ. Syst. 2014, 8, 834–843. [Google Scholar] [CrossRef]
- de Ruvo, E.; Sciarra, L.; Martino, A.M.; Rebecchi, M.; Iulianella, R.V.; Sebastiani, F.; Fagagnini, A.; Borrelli, A.; Scarà, A.; Grieco, D.; et al. A prospective comparison of remote monitoring systems in implantable cardiac defibrillators: Potential effects of frequency of transmissions. J. Interv. Card. Electrophysiol. 2016, 45, 81–90. [Google Scholar] [CrossRef]
- Guzik, P.; Malik, M. ECG by mobile technologies. J. Electrocardiol. 2016, 49, 894–901. [Google Scholar] [CrossRef]
- Miah, S.J.; Gammack, J.; Hasan, N. Extending the framework for mobile health information systems Research: A content analysis. Inf. Syst. 2017, 69, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Rezaii, T.Y.; Beheshti, S.; Shamsi, M.; Eftekharifar, S. ECG signal compression and denoising via optimum sparsity order selection in compressed sensing framework. Biomed. Signal Process. Control 2018, 41, 161–171. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, L.N.; Dandapat, S. Multi-channel ECG data compression using compressed sensing in eigenspace. Comput. Biol. Med. 2016, 73, 24–37. [Google Scholar] [CrossRef]
- Chen, S.; Hua, W.; Li, Z.; Li, J.; Gao, X. Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 2017, 31, 165–173. [Google Scholar] [CrossRef]
- Niederhauser, T.; Haeberlin, A.; Jesacher, B.; Fischer, A.; Tanner, H. Model-based delineation of non-uniformly sampled ECG signals. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Tekeste, T.; Saleh, H.; Mohammad, B.; Ismail, M. Ultra-Low Power QRS Detection and ECG Compression Architecture for IoT Healthcare Devices. IEEE Trans. Circ. Syst. Regul. Pap. 2018, 66, 669–679. [Google Scholar] [CrossRef]
- Qaisar, S.M.; Subasi, A. An adaptive rate ECG acquisition and analysis for efficient diagnosis of the cardiovascular diseases. In Proceedings of the 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen, China, 13–15 July 2018; pp. 177–181. [Google Scholar] [CrossRef]
- Budiman, E.S. Multi-Rate Analyte Sensor Data Collection with Sample Rate Configurable Signal Processing. U.S. Patent 20170027483A1, 2017. [Google Scholar]
- Qaisar, S.M.; Fesquet, L.; Renaudin, M. Adaptive rate filtering a computationally efficient signal processing approach. Signal Process. 2014, 94, 620–630. [Google Scholar] [CrossRef]
- Qaisar, S.M.; Ben-Romdhane, M.; Anwar, O.; Tlili, M.; Maalej, A.; Rivet, F.; Rebai, C.; Dallet, D. Time-domain characterization of a wireless ECG system event driven A/D converter. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Qaisar, S.M. Efficient mobile systems based on adaptive rate signal processing. Comput. Electr. Eng. 2019, 79, 106462. [Google Scholar] [CrossRef]
- Hou, Y.; Qu, J.; Tian, Z.; Atef, M.; Yousef, K.; Lian, Y.; Wang, G. A 61-nW level-crossing ADC with adaptive sampling for biomedical applications. IEEE Trans. Circ. Syst. II Express Briefs 2018, 66, 56–60. [Google Scholar] [CrossRef]
- Marisa, T.; Niederhauser, T.; Haeberlin, A.; Wildhaber, R.A.; Vogel, R.; Goette, J.; Jacomet, M. Pseudo asynchronous level crossing ADC for ECG signal acquisition. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Nasserian, M.; Peiravi, A.; Moradi, F. An adaptive-resolution signal-specific ADC for sensor-interface applications. Analog Integr. Circ. Signal Process. 2019, 98, 125–135. [Google Scholar] [CrossRef]
- Miskowicz, M. Event-Based Control and signal Processing; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Mashhadi, M.B.; Salarieh, N.; Farahani, E.S.; Marvasti, F. Level crossing speech sampling and its sparsity promoting reconstruction using an iterative method with adaptive thresholding. IET Signal Process. 2017, 11, 721–726. [Google Scholar] [CrossRef]
- Moser, B.A.; Lunglmayr, M. On quasi-isometry of threshold-based sampling. IEEE Trans. Signal Process. 2019, 67, 3832–3841. [Google Scholar] [CrossRef] [Green Version]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Qaisar, S.M.; Yahiaoui, R.; Gharbi, T. An efficient signal acquisition with an adaptive rate A/D conversion. In Proceedings of the 2013 IEEE International Conference on Circuits and Systems (ICCAS), Kuala lumpur, Malaysia, 18–19 September 2013; pp. 124–129. [Google Scholar] [CrossRef]
- Qaisar, S.M.; Akbar, M.; Beyrouthy, T.; Al-Habib, W.; Asmatulah, M. An error measurement for resampled level crossing signal. In Proceedings of the 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), Krakow, Poland, 13–15 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Massopust, P. Interpolation and Approximation with Splines and Fractals; Oxford University Press, Inc.: New York, NY, USA, 2010; ISBN 978-0-19-533654-2. [Google Scholar]
- Zhang, Z.; Telesford, Q.K.; Giusti, C.; Lim, K.O.; Bassett, D.S. Choosing wavelet methods, filters, and lengths for functional brain network construction. PLoS ONE 2016, 11, e0157243. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.F.; Bisson, G. Text categorization using word similarities based on higher order co-occurrences. In Proceedings of the 2010 SIAM International Conference on Data Mining (SDM), Columbus, OH, USA, 29 April–1 May 2010; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dudani, S.A. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 325–327. [Google Scholar] [CrossRef]
- Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019, 113. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, W. Granular support vector machine: A review. Artif. Intell. Rev. 2019, 51, 19–32. [Google Scholar] [CrossRef]
- Hussain, S.F.; Suryani, A. On retrieving intelligently plagiarized documents using semantic similarity. Eng. Appl. Artif. Intell. 2015, 45, 246–258. [Google Scholar] [CrossRef]
- Moore, H. MATLAB for Engineers; Pearson: London, UK, 2017; ISBN 978-0-13-458964-0. [Google Scholar]
- Hussain, S.F. A novel robust kernel for classifying high-dimensional data using Support Vector Machines. Expert Syst. Appl. 2019, 131, 116–131. [Google Scholar] [CrossRef]
- Rokach, L. Decision forest: Twenty years of research. Inf. Fusion 2016, 27, 111–125. [Google Scholar] [CrossRef]
- Cavanagh, J. Computer Arithmetic and Verilog HDL Fundamentals; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- de Chazal, P.; O’Dwyer, M.; Reilly, R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2004, 51, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Christov, I.; Gómez-Herrero, V.; Krasteva, G.; Jekova, I.; Gotchev, A.; Egiazarian, K. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Med. Eng. Phys. 2006, 28, 876–887. [Google Scholar] [CrossRef]
CLASS | Records | Number of Beats Used |
---|---|---|
Normal | 116, 119, 209 | 300 |
RBBB | 118, 124, 212 | 300 |
LBBB | 109, 111, 214 | 300 |
APC | 118, 200, 209 | 300 |
PVC | 119, 200, 233 | 300 |
hck | h1k | h2k | h3k | h4k | h5k | h6k | h7k | h8k | h9k | h10k | h11k | h12k | h13k | h14k | h15k | h16k |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frefc (Hz) | 75 | 94 | 113 | 132 | 151 | 170 | 189 | 208 | 227 | 246 | 265 | 284 | 303 | 322 | 341 | 360 |
Kc | 23 | 30 | 36 | 43 | 49 | 55 | 61 | 68 | 74 | 80 | 86 | 92 | 99 | 105 | 111 | 117 |
CLASS | Max Gain in Additions | Min Gain in Additions | Mean Gain in Additions | Median Gain in Additions |
---|---|---|---|---|
Normal | 15.97 | 6.67 | 8.12 | 7.90 |
RBBB | 12.17 | 6.66 | 7.32 | 7.27 |
LBBB | 12.46 | 6.70 | 7.86 | 7.66 |
APC | 10.75 | 6.75 | 7.71 | 7.56 |
PVC | 15.06 | 6.71 | 8.03 | 7.77 |
CLASS | Max Gain in Multiplications | Min Gain in Multiplications | Mean Gain in Multiplications | Median Gain in Multiplications |
---|---|---|---|---|
Normal | 16.14 | 6.74 | 8.31 | 8.09 |
RBBB | 12.30 | 6.73 | 7.48 | 7.43 |
LBBB | 12.58 | 6.76 | 8.04 | 7.84 |
APC | 10.86 | 6.81 | 7.89 | 7.74 |
PVC | 15.22 | 6.76 | 8.22 | 7.95 |
Classifier | Acc | NMI | F1 | Kappa | Sp |
---|---|---|---|---|---|
ANN | 0.93 | 0.82 | 0.93 | 0.77 | 0.98 |
k-NN | 0.83 | 0.71 | 0.81 | 0.46 | 0.96 |
SVM | 0.93 | 0.84 | 0.93 | 0.75 | 0.98 |
RF | 0.97 | 0.94 | 0.97 | 0.90 | 0.99 |
Bagging | 0.96 | 0.89 | 0.96 | 0.79 | 0.99 |
Study | Features Extraction | Classification Method | No. of Classes | Accuracy (%) |
---|---|---|---|---|
[4] | Wavelet Packet Decomposition (WPD) and Wavelet-Based kernel Principle Component Analysis (wkPCA) | Backpropagation Neural Network (BNN) | 5 | 98.03 |
[5] | Wavelet Packet Entropy (WPE) | Random Forests (RF) | 5 | 94.61 |
[6] | Discrete Wavelet Transform (DWT) | Probabilistic Neural Network (PNN) | 8 | 92.75 |
[12] | Discrete Wavelet Transform (DWT), Temporal, and Morphological | Support Vector Machine (SVM) | 4 | 98.39 |
[13] | Discrete Wavelet Transform (DWT) and Principle Component Analysis (PCA) | Support Vector Machine (SVM)-Radial Basis Function (RBF) | 5 | 96.92 |
[14] | Bispectrumand Principle Component Analysis (PCA) | Support Vector Machine (SVM)-Radial Basis Function (RBF) | 5 | 93.48 |
[15] | HermiteFunction Coefficient and Temporal Features | Optimized block-based Neural Network (OBNN) | 5 | 97.00 |
This Study | Wavelet Decomposition and Sub-band statistical features | Random Forests (RF) | 5 | 97.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian Qaisar, S.; Fawad Hussain, S. Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare. Sensors 2020, 20, 2252. https://doi.org/10.3390/s20082252
Mian Qaisar S, Fawad Hussain S. Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare. Sensors. 2020; 20(8):2252. https://doi.org/10.3390/s20082252
Chicago/Turabian StyleMian Qaisar, Saeed, and Syed Fawad Hussain. 2020. "Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare" Sensors 20, no. 8: 2252. https://doi.org/10.3390/s20082252
APA StyleMian Qaisar, S., & Fawad Hussain, S. (2020). Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare. Sensors, 20(8), 2252. https://doi.org/10.3390/s20082252