Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Deposition and Characterization of the Polypyrrole Morphology
3.2. Characterization of the Platform
3.3. The Electrochemical Oxidation of FA
3.4. Intraassay Stability
3.5. Stability in Time
3.6. Interference Studies
3.7. Real Sample Analysis
3.7.1. Commercial Human Serum
3.7.2. Pharmaceutical Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pitkin, R.M. Folate and neural tube defects. Am. J. Clin. Nutr. 2007, 85, 285S–288S. [Google Scholar] [CrossRef] [Green Version]
- Argyridis, S. Folic acid in pregnancy. Obs. Gynaecol. Reprod. Med. 2019, 29, 118–120. [Google Scholar] [CrossRef]
- Frommherz, L.; Martiniak, Y.; Heuer, T.; Roth, A.; Kulling, S.E.; Hoffmann, I. Degradation of folic acid in fortified vitamin juices during long term storage. Food Chem. 2014, 159, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Manzoori, J.L.; Jouyban, A.; Amjadi, M.; Soleymani, J. Spectrofluorimetric determination of folic acid in tablets and urine samples using 1,10-Phenanthroline-terbium probe. Luminescence 2011, 26, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Shishehbore, M.R.; Sheibani, A.; Haghdost, A. Kinetic spectrophotometric method as a new strategy for the determination of vitamin B9 in pharmaceutical and biological samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 304–307. [Google Scholar] [CrossRef]
- Matias, R.; Ribeiro, P.R.S.; Sarraguça, M.C.; Lopes, J.A. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal. Methods 2014, 6, 3065–3071. [Google Scholar] [CrossRef]
- De Moura Ribeiro, M.V.; da Silva Melo, I.; da Costa Lopes, F.C.; Moita, G.C. Development and validation of a method for the determination of folic acid in different pharmaceutical formulations using derivative spectrophotometry. Braz. J. Pharm. Sci. 2016, 52, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Cao, M.; Wang, N.; Muhammad, N.; Wu, S.; Zhu, Y. Simple coupled ultrahigh performance liquid chromatography and ion chromatography technique for simultaneous determination of folic acid and inorganic anions in folic acid tablets. Food Chem. 2018, 239, 62–67. [Google Scholar] [CrossRef]
- Sulphated, C.; Specific, A.; Examine, B.; Thin, C.; Related, T. FOLIC ACID Acidum folicum. In European Pharmacopoeia, Ed. 9.0 E.; Council of Europe: Strasbourg, France, 2017; pp. 2524–2526. [Google Scholar]
- Liu, B.; Luo, L.; Ding, Y.; Si, X.; Wei, Y.; Ouyang, X.; Xu, D. Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-Deposited NiO/graphene composite film modified electrode. Electrochim. Acta 2014, 142, 336–342. [Google Scholar] [CrossRef]
- Dhanalakshmi, N.; Priya, T.; Thennarasu, S.; Karthikeyan, V.; Thinakaran, N. Effect of La doping level on structural and sensing properties of LZO/RGO nanohybrid: Highly selective sensing platform for isoprenaline determinations in the presence of ascorbic acid, uric acid and folic acid. J. Electroanal. Chem. 2019, 848, 113283. [Google Scholar] [CrossRef]
- Mirmoghtadaie, L.; Ensafi, A.A.; Kadivar, M.; Norouzi, P. Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-Pencil graphite electrode using response surface methodology. Mater. Sci. Eng. C 2013, 33, 1753–1758. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Ivari, S.G.; Torkzadeh-Mahani, M. Voltammetric determination of 6-Thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Mater. Sci. Eng. C 2016, 69, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Raoof, J.B.; Teymoori, N.; Khalilzadeh, M.A.; Ojani, R. A high sensitive electrochemical nanosensor for simultaneous determination of glutathione, NADH and folic acid. Mater. Sci. Eng. C 2015, 47, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Vladislavić, N.; Buzuk, M.; Buljac, M.; Kožuh, S.; Bralić, M.; Brinić, S. Sensitive Electrochemical Determination of Folic Acid Using ex–Situ Prepared Bismuth Film Electrodes. Croat. Chem. Acta 2017, 90, 231–239. [Google Scholar] [CrossRef]
- Ciui, B.; Tertiş, M.; Cernat, A.; Sǎndulescu, R.; Wang, J.; Cristea, C. Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of Pseudomonas aeruginosa Virulence Factors. Anal. Chem. 2018, 90, 7761–7768. [Google Scholar] [CrossRef] [PubMed]
- Tertiș, M.; Cernat, A.; Lacatiș, D.; Florea, A.; Bogdan, D.; Suciu, M.; Săndulescu, R.; Cristea, C. Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-Based 3D architecture. Electrochem. Commun. 2017, 75, 43–47. [Google Scholar] [CrossRef]
- Debiemme-Chouvy, C.; Fakhry, A.; Pillier, F. Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta 2018, 268, 66–72. [Google Scholar] [CrossRef]
- Cernat, A.; Griveau, S.; Richard, C.; Bedioui, F.; Sǎndulescu, R. Horseradish peroxidase nanopatterned electrodes by click chemistry: Application to the electrochemical detection of paracetamol. Electroanalysis 2013, 25, 1369–1372. [Google Scholar] [CrossRef]
- Plausinaitis, D.; Ratautaite, V.; Mikoliunaite, L.; Sinkevicius, L.; Ramanaviciene, A.; Ramanavicius, A. Quartz Crystal Microbalance-Based Evaluation of the Electrochemical Formation of an Aggregated Polypyrrole Particle-Based Layer. Langmuir 2015, 31, 3186–3193. [Google Scholar] [CrossRef]
- Wysocka-Żołopa, M.; Winkler, K. Electrochemical synthesis and properties of conical polypyrrole structures. Electrochim. Acta 2017, 258, 1421–1434. [Google Scholar] [CrossRef]
- Lavanya, N.; Fazio, E.; Neri, F.; Bonavita, A.; Leonardi, S.G.; Neri, G.; Sekar, C. Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modi fi ed glassy carbon electrode. JEAC 2016, 770, 23–32. [Google Scholar]
- Cernat, A.; Griveau, S.; Martin, P.; Lacroix, J.C.; Farcau, C.; Sandulescu, R.; Bedioui, F. Electrografted nanostructured platforms for click chemistry. Electrochem. Commun. 2012, 23, 141–144. [Google Scholar] [CrossRef]
- Cernat, A.; Le Goff, A.; Holzinger, M.; Sandulescu, R.; Cosnier, S. Micro- to nanostructured poly(pyrrole-Nitrilotriacetic acid) films via nanosphere templates: Applications to 3D enzyme attachment by affinity interactions. Anal. Bioanal. Chem. 2014, 406, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.; Anwar, A.; Kanwal, Q. Electrochemical determination of folic acid: A short review. Anal. Biochem. 2016, 510, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Pourhabib, A.; Giahi, M. Square wave voltammetric quanti fi cation of folic acid, uric acid and ascorbic acid in biological matrix. J. Pharm. Anal. 2017, 7, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-Butylhydroquinone and folic acid sensor. Compos. Part B Eng. 2019, 172, 666–670. [Google Scholar] [CrossRef]
- Mollaei, M.; Ghoreishi, S.M.; Khoobi, A. Electrochemical investigation of a novel surfactant for sensitive detection of folic acid in pharmaceutical and biological samples by multivariate optimization. Measurement 2019, 145, 300–310. [Google Scholar] [CrossRef]
- Pereira, A.V.; Cervini, P.; Gomes Cavalheiro, É.T. Do voltammetry electrodes modified with MIPs really work? the role of large molecules: Folic acid as a probe. Anal. Methods 2014, 6, 6658–6667. [Google Scholar] [CrossRef]
- Kuceki, M.; de Oliveira, F.M.; Segatelli, M.G.; Coelho, M.K.L.; Pereira, A.C.; da Rocha, L.R.; de Cássia Mendonça, J.; Tarley, C.R.T. Selective and sensitive voltammetric determination of folic acid using graphite/restricted access molecularly imprinted poly(methacrylic acid)/SiO2 composite. J. Electroanal. Chem. 2018, 818, 223–230. [Google Scholar] [CrossRef]
- Kanchana, P.; Sekar, C. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 58–65. [Google Scholar] [CrossRef]
- Cernat, A.; Tertis, M.; Gandouzi, I.; Bakhrouf, A.; Suciu, M.; Cristea, C. Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem. Commun. 2018, 88, 5–9. [Google Scholar] [CrossRef]
- Kmellár, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martínez-Uroz, M.A.; Valverde, A.; Fernandez-Alba, A.R. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2008, 1215, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Olmo-García, L.; Bajoub, A.; Monasterio, R.P.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Development and validation of LC-MS-based alternative methodologies to GC–MS for the simultaneous determination of triterpenic acids and dialcohols in virgin olive oil. Food Chem. 2018, 239, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Folaţi Serici | Synevo. Available online: https://www.synevo.ro/folati-serici/ (accessed on 30 September 2019).
- Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO nanoparticle-Modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 2014, 20, 421–429. [Google Scholar] [CrossRef]
- Gao, X.; Yue, H.; Huang, S.; Lin, X.; Gao, X.P.A.; Wang, B.; Yao, L.; Wang, W.; Guo, E. Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid. J. Electroanal. Chem. 2018, 808, 189–194. [Google Scholar] [CrossRef]
- Nigović, B.; Mornar, A.; Brusač, E.; Jeličić, M.L. Selective sensor for simultaneous determination of mesalazine and folic acid using chitosan coated carbon nanotubes functionalized with amino groups. J. Electroanal. Chem. 2019, 851, 113450. [Google Scholar] [CrossRef]
Configuration | Rs ± SD (Ω) | Rct ± SD (kΩ) | CPE1 | W (mMho) | R1 ± SD (Ω) | CPE2 | R2 ± SD (Ω) | C (F) | R3 ± SD (Ω) | CPE3 | χ² | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y0(mMho) | N | Y0(mMho) | N | Y0(mMho) | N | |||||||||
Unmodified graphite electrode | 208 ± 1.6 | 508 ± 6.7 | 2.32 | 0.89 | 2.35 | - | - | - | - | - | - | - | - | 0.014 |
Carboxylic polypyrrole modified electrode | 179 ± 4.6 | 54.6 ± 1.1 | 63.7 | 1.1 | 1.24 | 385 ± 4.4 | 1.33 | 1.1 | 8.91 ± 0.4 | 10.5 | - | - | - | 0.019 |
Modified electrode after the detection of FA | 202 ± 4.6 | 11.2 ± 0.6 | 216 | 0.74 | 129 | 147 ± 2.6 | 2.24 | 1.1 | 3.91 ± 0.2 | 3.35 | 147 ± 5.7 | 2.24 | 1.1 | 0.020 |
Commercial Serum Spiked with FA | ||||
---|---|---|---|---|
[FA] (μM) | Recovery (%) | |||
Current intensity | Calculated [FA] | |||
25 | 104.1% | 115.0% | ||
50 | 104.0% | 128.0% | ||
100 | 98.9% | 105.6% | ||
Pharmaceutical Tablets (5 mg) | ||||
Extraction solvent | [FA] (μM) | Recovery (%) | ||
Current intensity | Calculated [FA] | Amount of FA in tablets | ||
Deionized water | 25 | 96.3% | 97.8% | 96.0% |
20 mM PBS pH 7.4 | 25 | 96.3% | 97.8% | 96.0% |
50 | 88.2% | 99.5% | 101.9% | |
100 | 98.3% | 104.4% | 102.4% |
Configuration | Detection Method | pH | Linear Range (μM) | LOD (μM) | Real Samples | Recovery (%) | Ref |
---|---|---|---|---|---|---|---|
Graphite paste MIP | DPV | 4.5 | 0.01–0.23 | Pharmaceutical samples | 97.7–105.0% | [30] | |
Mn-SnO2 NPs/GCE | SWV | 6 | 0.5–900 | 0.079 | Urine samples | 98.4–104.3% | [22] |
Pharmaceutical samples | 99.4% | ||||||
Bi film/GCE | SWV | 4.5 | 0.1–10 | 0.001 | Pharmaceutical samples | 97.7–103.4% | [15] |
ZnO-Cuo nanoplates/CPE | SWV | 7 | Pharmaceutical samples | 98.0–102.9% | [13] | ||
n-dodecylpyridinium chloride/CPE | DPV | 8 | 0.1–10 | 0.003 | Pharmaceutical samples | 94.0–103.0% | [28] |
Urine samples | 98.2–103.3% | ||||||
ZnO/CNT/CPE | SWV | 7 | 3–700 | 1 | Pharmaceutical samples | - | [14] |
ZnO/NPs ionic liquid/ CPE | SWV | 9 | 0.05–550 | 0.01 | Pharmaceutical samples | - | [36] |
Gr/ZnO NWs/GF | DPV | 7.4 | 1–60 | 1 | Pharmaceutical samples | 98.2–103.6% | [37] |
Urine samples | 103.2–104% | ||||||
CNT-NH2/chitosan/GCE | SWV | 6 | 0.012–1.25 | 0.003 | Pharmaceutical samples Human serum | 98.4 96.8–99.5 | [38] |
Carboxylic Ppy/graphite-based SPE | CV | 7.4 | 2.5–200 | 0.8 | Pharmaceutical samples | 96.0–102.42% | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melinte, G.; Cernat, A.; Irimes, M.-B.; Györfi, S.J.; Tertiș, M.; Suciu, M.; Anicăi, L.; Săndulescu, R.; Cristea, C. Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole. Sensors 2020, 20, 2315. https://doi.org/10.3390/s20082315
Melinte G, Cernat A, Irimes M-B, Györfi SJ, Tertiș M, Suciu M, Anicăi L, Săndulescu R, Cristea C. Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole. Sensors. 2020; 20(8):2315. https://doi.org/10.3390/s20082315
Chicago/Turabian StyleMelinte, Gheorghe, Andreea Cernat, Maria-Bianca Irimes, Szabolcs János Györfi, Mihaela Tertiș, Maria Suciu, Liana Anicăi, Robert Săndulescu, and Cecilia Cristea. 2020. "Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole" Sensors 20, no. 8: 2315. https://doi.org/10.3390/s20082315
APA StyleMelinte, G., Cernat, A., Irimes, M.-B., Györfi, S. J., Tertiș, M., Suciu, M., Anicăi, L., Săndulescu, R., & Cristea, C. (2020). Selective Detection of Folic Acid Using 3D Polymeric Structures of 3-Carboxylic Polypyrrole. Sensors, 20(8), 2315. https://doi.org/10.3390/s20082315