Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Folin–Denis Reaction
2.3. Preparation of Metal Hydroxides
2.4. Decomposition of TCP through Alcoholysis
2.5. Decomposition of TCP through Hydrolysis
3. Results
3.1. UV-Vis Kinetic Characterization of TCP Decomposition
3.2. Decomposition of TCP by Fe(OH)3 and Ru(OH)3
3.3. Folin–Denis Reaction of the Decomposition Products
3.4. GC-MS Characterization of TCP Alcoholysis
3.5. GC-MS Characterization of TCP Hydrolysis
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. The World Health Report 2003-Shaping the Future; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Xu, H.-Y.; Wang, P.; Sun, Y.-J.; Jiang, L.; Xu, M.-Y.; Wu, Y.-J. Autophagy in Tri-o-cresyl Phosphate-Induced Delayed Neurotoxicity. J. Neuropathol. Exp. Neurol. 2017, 76, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, X.; Ma, Y.; Yan, L.; Ren, Y.; Yu, D.; Qiao, B.; Shen, X.; Liu, H.; Zhang, D.; et al. Tri-ortho-cresyl phosphate (TOCP)-induced reproductive toxicity involved in placental apoptosis, autophagy and oxidative stress in pregnant mice. Environ. Toxicol. 2020, 35, 97–107. [Google Scholar] [CrossRef]
- Alsamad, M.A.A.; Hadi, A.E.; Hasan, M.A. Electron microscopic changes in mitochondria in central nervous system of neurotoxicity of TOCP (tri ortho cresyl phosphate) in adult hen. Eurasian J. Biosci. 2020, 14, 435–439. [Google Scholar]
- Xu, H.-Y.; Wang, P.; Sun, Y.-J.; Xu, M.-Y.; Zhu, L.; Wu, Y.-J. Activation of Neuregulin 1/ErbB Signaling Is Involved in the Development of TOCP-Induced Delayed Neuropathy. Front. Mol. Neurosci. 2018, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, D.J.; Rutten, J.M.M.; van den Berg, M.; Westerink, R.H.S. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Neurotoxicology 2017, 59, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Hausherr, V.; Schöbel, N.; Liebing, J.; van Thriel, C. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques. Neurotoxicology 2017, 59, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Lorke, D.E.; Stegmeier-Petroianu, A.; Petroianu, G.A. Biologic activity of cyclic and caged phosphates: A review. J. Appl. Toxicol. 2017, 37, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Masson, P.; Nachon, F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. 2017, 142, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Casida, J.E. Organophosphorus Xenobiotic Toxicology. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 309–327. [Google Scholar] [CrossRef]
- Jokanović, M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 2018, 410, 125–131. [Google Scholar] [CrossRef]
- Ding, Q.; Fang, S.; Chen, X.; Wang, Y.; Li, J.; Tian, F.; Xu, X.; Attali, B.; Xie, X.; Gao, Z. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov. 2017, 3, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, M.; Fuertes, I.; Prats, E.; Abad, J.L.; Padrós, F.; Gomez-Canela, C.; Casas, J.; Estevez, J.; Vilanova, E.; Piña, B.; et al. Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, P.; Sun, Y.J.; Xu, M.Y.; Wu, Y.J. Disturbed phospholipid homeostasis in endoplasmic reticulum initiates tri-o-cresyl phosphate-induced delayed neurotoxicity. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, P.E.; Cole, T.B.; Cartwright, M.; Suzuki, S.M.; Thummel, K.E.; Lin, Y.S.; Co, A.L.; Rettie, A.E.; Kim, J.H.; Furlong, C.E. Identifying safer anti-wear triaryl phosphate additives for jet engine lubricants. Chem. Biol. Interact. 2013, 203, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yin, H.; Wei, K.; Peng, H.; Lu, G.; Dang, Z. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Chemosphere 2019, 232, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, Y.; Chang, Y.; Cui, Y.; Klobučar, G.; Li, M. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. Ecotoxicol. Environ. Saf. 2018, 158, 78–86. [Google Scholar] [CrossRef]
- Huang, C.; Li, N.; Yuan, S.; Ji, X.; Ma, M.; Rao, K.; Wang, Z. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. Environ. Pollut. 2017, 230, 775–786. [Google Scholar] [CrossRef]
- Flaskos, J.; McLean, W.G.; Fowler, M.J.; Hargreaves, A.J. Tricresyl phosphate inhibits the formation of axon-like processes and disrupts neurofilaments in cultured mouse N2a and rat PC12 cells. Neurosci. Lett. 1998, 242, 101–104. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, J.; Zhao, H.; Wan, H.; Qu, B. Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution: Influencing factors and photolysis products. Chemosphere 2020, 241, 124971. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Kozielska, B.; Konieczyński, J.; Bielaczyc, P. Occurrence of organic phosphates in particulate matter of the vehicle exhausts and outdoor environment—A case study. Environ. Pollut. 2019, 244, 351–360. [Google Scholar] [CrossRef]
- Luo, Q.; Shan, Y.; Muhammad, A.; Wang, S.; Sun, L.; Wang, H. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China. Environ. Sci. Pollut. Res. 2018, 25, 31752–31761. [Google Scholar] [CrossRef] [PubMed]
- Crump, D.; Harrison, P.; Walton, C. Aircraft Cabin Air Sampling Study: Part 1 of the Final Report; Institute of Environment and Health, Cranfield University: Cranfield, UK, 2011. [Google Scholar]
- Rosenberger, W. Effect of charcoal equipped HEPA filters on cabin air quality in aircraft. A case study including smell event related in-flight measurements. Build. Environ. 2018, 143, 358–365. [Google Scholar] [CrossRef]
- Schindler, B.K.; Weiss, T.; Schütze, A.; Koslitz, S.; Broding, H.C.; Bünger, J.; Brüning, T. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events. Arch. Toxicol. 2013, 87, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Winder, C.; Michaelis, S. Crew Effects from Toxic Exposures on Aircraft. In Air Quality in Airplane Cabins and Similar Enclosed Spaces; Springer: Berlin/Heidelberg, Germany, 2005; pp. 229–248. [Google Scholar]
- Rosenberger, W.; Beckmann, B.; Wrbitzky, R. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 117–127. [Google Scholar] [CrossRef]
- Zhao, F.; Wan, Y.; Zhao, H.; Hu, W.; Mu, D.; Webster, T.F.; Hu, J. Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. Environ. Sci. Technol. 2016, 50, 8896–8903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, X.; Wei, L.; Sun, R.; Guo, H.; Liu, X.; Liu, S.; Li, Y.; Mai, B. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment. Sci. Total Environ. 2018, 630, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Kosarac, I.; Kubwabo, C.; Foster, W.G. Quantitative determination of nine urinary metabolites of organophosphate flame retardants using solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1014, 24–30. [Google Scholar] [CrossRef]
- Yang, X.; Zitova, A.; Kirsch, J.; Fergus, J.W.; Overfelt, R.A.; Simonian, A.L. Portable and remote electrochemical sensing system for detection of tricresyl phosphate in gas phase. Sens. Actuators B Chem. 2012, 161, 564–569. [Google Scholar] [CrossRef]
- Simonian, A.; Vertelov, G.; Gale, W. TCP Electrochemical Detection. Proc. ECS Trans. 2006, 3, 21–34. [Google Scholar]
- Pedrosa, V.A.; Epur, R.; Benton, J.; Overfelt, R.A.; Simonian, A.L. Copper nanoparticles and carbon nanotubes-based electrochemical sensing system for fast identification of tricresyl-phosphate in aqueous samples and air. Sens. Actuators B Chem. 2009, 140, 92–97. [Google Scholar] [CrossRef]
- Yang, X.; Kirsch, J.; Olsen, E.V.; Fergus, J.W.; Simonian, A.L. Anti-fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate. Sens. Actuators B Chem. 2013, 177, 659–667. [Google Scholar] [CrossRef]
- Muir, D.C.G.; Yarechewski, A.L.; Grift, N.P. Environmental dynamics of phosphate esters. III. Comparison of the bioconcentration of four triaryl phosphates by fish. Chemosphere 1983, 12, 155–166. [Google Scholar] [CrossRef]
- Barrett, H.; Butler, R.; Wilson, I.B. Evidence for a phosphoryl-enzyme intermediate in alkaline phosphatase-catalyzed reactions. Biochemistry 1969, 8, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Kim, E.; Strathmann, T.J. Mineral- and Base-Catalyzed Hydrolysis of Organophosphate Flame Retardants: Potential Major Fate-Controlling Sink in Soil and Aquatic Environments. Environ. Sci. Technol. 2018, 52, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Chin, B.; Simonian, A.L. Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application. Sensors 2020, 20, 2317. https://doi.org/10.3390/s20082317
Zhou L, Chin B, Simonian AL. Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application. Sensors. 2020; 20(8):2317. https://doi.org/10.3390/s20082317
Chicago/Turabian StyleZhou, Lang, Bryan Chin, and Alex L. Simonian. 2020. "Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application" Sensors 20, no. 8: 2317. https://doi.org/10.3390/s20082317
APA StyleZhou, L., Chin, B., & Simonian, A. L. (2020). Catalytic Hydrolysis of Tricresyl Phosphate by Ruthenium (III) Hydroxide and Iron (III) Hydroxide towards Sensing Application. Sensors, 20(8), 2317. https://doi.org/10.3390/s20082317