Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming
Abstract
:1. Introduction
2. Principle and Design
2.1. Principle of the IMET
2.2. Design of the OCMO with IMET
3. Fabrication
- The SOI layers are 5 μm thick and heavily boron-doped in the range of 0.001–0.002 Ω·cm. A layer of low-stress silicon nitride with a thickness of 300 nm is deposited using low-pressure chemical vapor deposition (LPCVD) and a layer of 600 nm aluminum is sputtered. Both layers are patterned. The aluminum layer serves as the source material of evaporation and the low-stress silicon nitride serves as the barrier layer.
- After deposition and patterning of the Cr/Pt/Au electrode, the structures of the micro-evaporators are patterned by deep reactive ion etching (DRIE) and released by HF vapor etching.
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Beek, J.T.M.; Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 2011, 22, 013001. [Google Scholar] [CrossRef]
- Nguyen, C.T.-C. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 251–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reza, A.; Behraad, B.; Joshua, L.; Nabki, F. Micromachined Resonators: A Review. Micromachines 2016, 7, 160. [Google Scholar]
- Ho Gavin, K.; Kangchun, P.J.; Farrokh, A. Micromechanical IBAR: Modeling and process compensation. J. Microelectromech. Syst. 2009, 19, 516–525. [Google Scholar]
- Mu, C.; Liwei, L. Post-packaging frequency tuning of microresonators by pulsed laser deposition. J. Micromech. Microeng. 2004, 14, 1742–1747. [Google Scholar]
- Lutz, M.; Partridge, A.; Gupta, P.; Buchan, N.; Klaassen, E.; McDonald, J.; Petersen, K. MEMS oscillators for high volume commercial applications. In Proceedings of the 14th International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 49–52. [Google Scholar]
- Hsu, W.-T.; Brown, A.R.; Cioffi, K.R. A programmable MEMS FSK transmitter. In Proceedings of the 2006 IEEE International Solid State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 6–9 February 2006; pp. 1111–1120. [Google Scholar]
- Salvia, J.; Melamud, R.; Chandorkar, S.; Lee, H.K.; Qu, Y.Q.; Lord, S.F.; Murmann, B.; Kenny, T.W. Phase lock loop based temperature compensation for MEMS oscillators. In Proceedings of the 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 661–664. [Google Scholar]
- Barrow, H.G.; Naing, T.L.; Schneider, R.A.; Rocheleau, T.O.; Yeh, V.; Ren, Z.; Nguyen, C.T.-C. A real-time 32.768-kHz clock oscillator using a 0.0154-mm2 micromechanical resonator frequency-setting element. In Proceedings of the 2012 IEEE International Frequency Control Symposium (FCS), Baltimore, MD, USA, 21–24 May 2012; pp. 1–6. [Google Scholar]
- Asl, S.Z.; Mukherjee, S.; Chen, W.; Joo, K.; Palwai, R.; Arumugam, N.; Galle, P.; Phadke, M.; Grosjean, C.; Salvia, J.; et al. A 1.55 × 0.85 mm2 3 ppm 1.0 μA 32.768 kHz MEMS-based oscillator. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 226–227. [Google Scholar]
- Zaliasl, S.; Salvia, J.C.; Hill, G.C.; Chen, L.W.; Joo, K.; Palwai, R.; Arumugam, N.; Phadke, M.; Mukherjee, S.; Lee, H.-C.; et al. A 3 ppm 1.5 × 0.8 mm2 1.0 μA 32.768 kHz MEMS-Based Oscillator. IEEE J. Solid-State Circuits 2015, 50, 291–302. [Google Scholar] [CrossRef]
- Ruffieux, D.; Krummenacher, F.; Pezous, A.; Spinola-Durante, G. Silicon Resonator Based 3.2 W Real Time Clock with 10 ppm Frequency Accuracy. IEEE J. Solid-State Circuits 2010, 45, 224–234. [Google Scholar] [CrossRef]
- Abdelmoneum, M.A.; Demirci, M.M.; Lin, Y.; Nguyen, C.T.-C. Location-dependent frequency tuning of vibrating micromechanical resonators via laser trimming. In Proceedings of the IEEE International Ultrasonics, Ferroelectricsand Frequency Control Joint 50th Anniversary Conference, Montreal, QC, Canada, 24–27 August 2004; pp. 272–279. [Google Scholar]
- Hsu, W.; Brown, A.R. Frequency trimming for MEMS resonator oscillators. In Proceedings of the IEEE Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; pp. 1088–1091. [Google Scholar]
- Samarao, A.K.; Ayazi, F. Postfabrication electrical trimming of silicon micromechanical resonators via joule heating. J. Microelectromech. Syst. 2011, 20, 1081–1088. [Google Scholar] [CrossRef]
- You, W.; Yang, H.; Pei, B.; Sun, K.; Li, X. Frequency trimming of silicon resonators after package with integrated micro-evaporators. IEEE MEMS 2017, 2017, 917–919. [Google Scholar]
- Hajjam, A.; Rahafrooz, A.; Pourkamali, S. Sub-100ppb/°C Temperature Stability in Thermally Actuated High Frequency Silicon Resonators via Degenerate Phosphorous Doping and Bias Current Optimization. In Proceedings of the 2010 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar]
- Hajjam, A.; Logan, A.; Pourkamali, S. Doping- Induced Temperature Compensation of Thermally Actuated High-Frequency Silicon Micromechanical Resonators. J. Microelectromech. Syst. 2012, 21, 681–688. [Google Scholar] [CrossRef]
- Chen, Y.; Ng, E.J.; Yang, Y.; Ahn, C.H.; Flader, I.; Kenny, T.W. In-situ ovenization of Lamé-mode silicon resonators for temperature compensation. IEEE MEMS 2015, 2015, 809–812. [Google Scholar]
- Chen, Y.; Ng, E.J.; Shin, D.D.; Ahn, C.H.; Yang, Y.; Flader, I.B.; Hong, V.A.; Kenny, T.W. Ovenized dual-mode clock (ODMC) based on highly doped single crystal silicon resonators. IEEE MEMS 2016, 2016, 91–94. [Google Scholar]
- You, W.; Zhang, L.; Yang, L.; Yang, H.; Li, X. Micro-oven-controlled N++ [100] length-extensional-mode oscillator for near zero temperature drift. IEEE MEMS 2016, 2016, 982–985. [Google Scholar]
- You, W.; Pei, B.; Sun, K.; Zhang, L.; Yang, H.; Li, X. Oven controlled N++ [100] length-extensional mode silicon resonator with frequency stability of 1 ppm over industrial temperature range. J. Micromech. Microeng. 2017, 27, 095002. [Google Scholar] [CrossRef]
- Binbin, P.; Peng, Z.; Sun, K.; Heng, Y.; Xinxin, L. Uniformly heated oven-controlled N++ [100] length-extensional-mode silicon resonator with ±500-ppb frequency error over industrial temperature range. Sensors Actuators A Phys. 2018, 284, 232–241. [Google Scholar]
- Shahmohammadi, M.; Harrington, B.; Abdolvand, R. Turnover temperature point in extensional- mode highly doped silicon microresonators. IEEE Trans. Electron Devices 2013, 60, 1213–1220. [Google Scholar] [CrossRef]
- Ng, E.J.; Hong, V.A.; Yang, Y.; Ahn, C.H.; Everhart, C.L.M.; Kenny, T.W. Temperature dependence of the elastic constants of doped silicon. J. Microelectromech. Syst. 2015, 24, 730–741. [Google Scholar] [CrossRef]
- Jaakkola, A.; Prunnila, M.; Pensala, T.; Dekker, J.; Pekko, P. Determination of doping and temperature- dependent elastic constants of degenerately doped silicon from MEMS resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1063–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafar, S.; Engh, T.A. Vacuum Evaporation of Pure Metals. Metall. Mater. Trans. A 2013, 42, 747–753. [Google Scholar]
- Alcock, C.B.; Itkin, V.P.; Horrigan, M.K. Vapour Pressure Equations for the Metallic Elements: 298–2500K. Can. Metall. Q. 1984, 23, 309–313. [Google Scholar] [CrossRef]
- Oswald, K.; Alcock, C.B.T. Metallurgical Thermochemistry; Metallurgical Industry Press: Beijing, China, 1985; pp. 486–513. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, B.; Sun, K.; Yang, H.; Ye, C.; Zhong, P.; Yu, T.; Li, X. Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming. Sensors 2020, 20, 2373. https://doi.org/10.3390/s20082373
Pei B, Sun K, Yang H, Ye C, Zhong P, Yu T, Li X. Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming. Sensors. 2020; 20(8):2373. https://doi.org/10.3390/s20082373
Chicago/Turabian StylePei, Binbin, Ke Sun, Heng Yang, Chaozhan Ye, Peng Zhong, Tingting Yu, and Xinxin Li. 2020. "Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming" Sensors 20, no. 8: 2373. https://doi.org/10.3390/s20082373
APA StylePei, B., Sun, K., Yang, H., Ye, C., Zhong, P., Yu, T., & Li, X. (2020). Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming. Sensors, 20(8), 2373. https://doi.org/10.3390/s20082373