Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bulk p-Type GaAs
2.2. Thin Film p-Type GaAs
3. Fabrication and Experimentation of the SAW Device
4. Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paredes, B.L.; Araujo, H.; Froborg, F.; Marangou, N.; Olcina, I.; Sumner, T.J.; Taylor, R.; Tomàs, A.; Vacheret, A. Response of photomultiplier tubes to xenon scintillation light. Astropart. Phys. 2018, 102, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Tang, Z.; Li, W.M.; Pei, Y. Physics design and dynamic simulation of a C-band photocathode electron gun for UEM. In Proceedings of the 29th Linear Accelerator Conference, Beijing, China, 16–20 September 2018. [Google Scholar]
- Hernández-García, C.; O’Shea, P.G.; Stutzman, M.L. Electron sources for accelerators. Phys. Today 2008, 61, 44. [Google Scholar] [CrossRef] [Green Version]
- Pierce, D.T.; Meier, F. Photoemission of spin-polarized electrons from GaAs. Phys. Rev. B 1976, 13, 5484. [Google Scholar] [CrossRef] [Green Version]
- Spicer, W.E. Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds. Phys. Rev. 1958, 112, 114. [Google Scholar] [CrossRef]
- Svechnikov, N.Y. Photoemission spectroscopy and microscopy of n-, p-GaAs(110) homostructures. J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 2013, 7, 113–122. [Google Scholar] [CrossRef]
- Accardi, A.; Albacete, J.L.; Anselmino, M.; Armesto, N.; Aschenauer, E.C.; Bacchetta, A.; Boer, D.; Brooks, W.K.; Burton, T.; Chang, N.-B.; et al. Electron-Ion Collider: The next QCD frontier. Eur. Phys. J. A 2016, 52, 268. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, Y.; Lu, W.; Moy, A.; Poelker, M.; Stutzman, M.; Zhang, S. Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector. Appl. Phys. Lett. 2016, 109, 252104. [Google Scholar] [CrossRef]
- Rocke, C.; Zimmermann, S.; Wixforth, A.; Kotthaus, J.P.; Bohm, G.; Weimann, G. Acoustically Driven Storage of Light in a Quantum Well. Phys. Rev. Lett. 1997, 78, 4099. [Google Scholar] [CrossRef] [Green Version]
- Kinzel, J.B.; Rudolph, D.; Bichler, M.; Abstreiter, G.; Finley, J.J.; Koblmüller, G.; Wixforth, A.; Krenner, H.J. Directional and Dynamic Modulation of the Optical Emission of an Individual GaAs Nanowire Using Surface Acoustic Waves. Nano Lett. 2011, 11, 1512–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Guo, S.; Zaghloul, M. Simulations of energy-bands bending effect and carriers transportation in semiconductor with propagating Surface Acoustic Waves. Proceedings of 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), Seoul, Korea, 21–25 August 2016; pp. 1921–1924. [Google Scholar]
- Afanasev, A.; Johnson, R.P. Raising Photoemission Efficiency with Surface Acoustic Waves. Proceedings of 24th Particle Accelerator Conference, New York, NY, USA, 20–25 March 2011; pp. 2492–2494. [Google Scholar]
- Dong, B.; Zaghloul, M. Generation and enhancement of surface acoustic waves on a highly doped p-type GaAs substrate. Nanoscale Adv. 2019, 1, 3537–3546. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J. The Physics of Solar Cells; World Scientific Publishing Company: Singapore, 2003. [Google Scholar]
- Spicer, W.E.; Herrera-Gomez, A. Modern theory and applications of photocathodes. In Photodetectors and Power Meters; International Society for Optics and Photonics: San Diego, CA, USA, 1993; pp. 18–35. [Google Scholar]
- Chubenko, O. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications. Ph.D. Dissertation, The George Washington University, Washington, DC, USA, 2018. [Google Scholar]
- Liu, W.; Poelker, M.; Peng, X.; Zhang, S.; Stutzman, M. A comprehensive evaluation of factors that influence the spin polarization of electrons emitted from bulk GaAs photocathodes. J. Appl. Phys. 2017, 122, 035703. [Google Scholar] [CrossRef]
- Kim, Y.; Hunt, W.D.; Hickernell, F.S.; Higgins, R.J. Surface acoustic wave properties of ZnO films on {001}-cut<110>-propagating GaAs substrates. J. Appl. Phys. 1994, 75, 7299–7303. [Google Scholar]
- Nysten, E.D.; Huo, Y.H.; Yu, H.; Song, G.F.; Rastelli, A.; Krenner, H.J. Multi-harmonic quantum dot optomechanics in fused LiNbO3–(Al) GaAs hybrids. J. Phys. D Appl. Phys. 2017, 50, 43LT01. [Google Scholar] [CrossRef]
- Wanner, J.; Gorini, C.; Schwab, P.; Eckern, U. Driving Spin and Charge in Quantum Wells by Surface Acoustic Waves. Adv. Mater. Interfaces 2014, 1, 1400181. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, B.; Afanasev, A.; Johnson, R.; Zaghloul, M. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves. Sensors 2020, 20, 2419. https://doi.org/10.3390/s20082419
Dong B, Afanasev A, Johnson R, Zaghloul M. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves. Sensors. 2020; 20(8):2419. https://doi.org/10.3390/s20082419
Chicago/Turabian StyleDong, Boqun, Andrei Afanasev, Rolland Johnson, and Mona Zaghloul. 2020. "Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves" Sensors 20, no. 8: 2419. https://doi.org/10.3390/s20082419
APA StyleDong, B., Afanasev, A., Johnson, R., & Zaghloul, M. (2020). Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves. Sensors, 20(8), 2419. https://doi.org/10.3390/s20082419