Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. Preparation and Assembly of Flexible Capacitive Pressure Sensor Based on Nanofiber Membrane
2.2.1. Preparation of Silver Nanowires (AgNWs)
2.2.2. Fabrication of Thermoplastic Polyurethane (TPU) Electrospinning Nanofiber Membranes (ENMs) and AgNW/TPU ENMs by Electrospinning
2.2.3. Design and Assembly of Flexible Capacitive Pressure Sensor
2.3. Characterization
3. Results and Discussion
3.1. Morphology and Properties of TPU ENMs and AgNW/TPU ENMs
3.2. Sensing Performances of Flexible Capacitive Pressure Sensor Based on a TPU Nanofiber Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Takao, S.; Yusaku, K.; Tsuyoshi, S.; Shingo, I.; Yoshiaki, N.; Yousuke, M.; Hiroshi, K.; Takayasu, S. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321. [Google Scholar]
- Kim, H.J.; Kim, Y.J. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites. Mater. Des. 2018, 151, 133. [Google Scholar] [CrossRef]
- Iizuka, M.; Kobayashi, M.; Hasegawa, Y.; Tomita, K.; Takeshima, R.; Izumizaki, M. A new flexible piezoelectric pressure sensor array for the noninvasive detection of laryngeal movement during swallowing. J. Physiol. Sci. 2018, 68, 837. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Kim, D.; Hall, N. Piezoelectric Pressure Sensors for Hypersonic Flow Measurements. J. Microelectromech. Syst. 2019, 28, 271. [Google Scholar] [CrossRef]
- Tomimatsu, Y.; Takahashi, H.; Kobayashi, T.; Matsumoto, K.; Shimoyama, I.; Itoh, T.; Maeda, R. A piezoelectric cantilever-type differential pressure sensor for a low standby power trigger switch. J. Micromech. Microeng. 2013, 23, 125023. [Google Scholar] [CrossRef]
- Dinh, T.H.N.; Martincic, E.; Dufour-Gergam, E. Capacitive flexible pressure sensor: Microfabrication process and experimental characterization. Microsyst. Tech. 2016, 22, 465. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Park, J.Y. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Org. Electron. 2018, 53, 213. [Google Scholar] [CrossRef]
- Khan, A.W.; Karimov, K.S.; Shah, M. Resistance Pressure Sensor Based on Ag/Cu2O-PEPC-NiPc/Al Composite. Key Eng. Mat. 2012, 510, 413. [Google Scholar] [CrossRef]
- Li, X.; Zhen, S.; Qian, K.; Liang, X.; Wang, X.; Shi, J.; Wu, X.; Yu, B. A heat-resistance and high-sensitivity acoustic pressure sensor based on aluminum-polyimide diaphragm. Sens. Actuat. A-Phys. 2018, 279, 75. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Wen, D. Characteristics research of pressure sensor based on nanopolysilicon thin films resistors. Int. J. Mod. Phys. B 2017, 31, 1750183. [Google Scholar] [CrossRef]
- Chang, H.; Kim, S.; Jin, S.; Lee, S.W.; Yang, G.T.; Lee, K.Y.; Yi, H. Ultrasensitive and highly stable resistive pressure sensors with biomaterial-incorporated interfacial layers for wearable health-monitoring and human-machine interfaces. ACS Appl. Mater. Interfaces 2018, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Yoon, H.; Jiang, T.; Wen, X.; Seung, W.; Kim, S.; Wang, Z.L. Fully Packaged Self-Powered Triboelectric Pressure Sensor Using Hemispheres-Array. Adv. Energy Mater. 2016, 6, 1502566. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, M.; Huang, J.; Bian, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z.L. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Advanced Energy Materials. Adv. Energy Mater. 2018, 8, 1702671. [Google Scholar] [CrossRef]
- Yuen, A.C.; Bakir, A.A.; Rajdi, N.N.; Lam, C.L.; Saleh, S.M.; Wicaksono, D.H. Proprioceptive sensing system for therapy assessment using cotton fabric-based biomedical microelectromechanical system. IEEE Sens. J. 2014, 14, 2872. [Google Scholar] [CrossRef]
- Park, B.; Kim, J.; Kang, C.; Jeong, C.; Kim, K.S.; Kim, J.U.; Yoo, P.J.; Kim, T.I. Dramatically Enhanced Mechanosensitivity and Signal-to-Noise Ratio of Nanoscale Crack-Based Sensors: Effect of Crack Depth. Adv. Mater. 2016, 28, 8068. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Lai, D.T.; Wang, Y.; Yap, L.W.; Si, K.J.; Shi, Q.; Jason, N.N.; Sridhar, T.; Uddin, H.; Cheng, W. Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Appl. Mater. Interfaces 2015, 7, 19700. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Ramasundaram, S.; Hwang, B.; Lee, N. An All-Elastomeric Transparent and Stretchable Temperature Sensor for Body-Attachable Wearable Electronics. Adv. Mater. 2015, 28, 502. [Google Scholar] [CrossRef] [PubMed]
- Mccoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q. Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016, 2, 1500407. [Google Scholar] [CrossRef]
- Chou, H.; Nguyen, A.; Chortos, A.; To, J.W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.; Tok, J.B.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Zhao, J.; Wu, G.; Tao, X.; Chen, W. Self-Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities. Small 2016, 12, 5074. [Google Scholar] [CrossRef]
- Li, Q.; Ullah, Z.; Li, W.; Guo, Y.; Xu, J.; Wang, R.; Zeng, Q.; Chen, M.; Liu, C.; Liu, L. Wide-Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Ag-Nanowires Hybrid Structures. Small 2016, 12, 5058. [Google Scholar] [CrossRef] [PubMed]
- Fukui, R.; Mori, T.; Sato, T. An Electrostatic Capacitive Floor Sensor System for Human Position Monitoring in a Living Space. Advanced Robotics. Adv. Robot. 2012, 26, 1127. [Google Scholar] [CrossRef]
- Choong, C.; Shim, M.; Lee, B.; Jeon, S.; Ko, D.; Kang, T.; Bae, J.; Lee, S.H.; Byun, K.; Im, J.; et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Qiu, Y.; Jia, J.; Wang, C.; Deng, J.; Pan, K. Wavelength-Gradient Graphene Films for Pressure-Sensitive Sensors. Adv. Mater. Technol. 2019, 4, 1800363. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; Mo, L.; Wang, Z.; Yang, W.; Zhou, H.; Zhang, H. Highly Sensitive Flexible Pressure Sensor with Microstructural Dielectric Layer. In Advanced Graphic Communications and Media Technologies; Zhao, P., Ouyang, Y., Xu, M., Yang, L., Ouyang, Y., Eds.; Springer: Singapore, 2016; Volume 417, pp. 1087–1094. [Google Scholar]
- Santelli, E.; Liddington, R.C.; Mohan, M.A.; Hoch, J.A.; Szurmant, H. The Crystal Structure of Bacillus subtilis YycI Reveals a Common Fold for Two Members of an Unusual Class of Sensor Histidine Kinase Regulatory Proteins. J. Bacteriol. 2007, 189, 3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, X.; Zhu, P.; Zeng, W.; Hu, Y.; Liang, X.; Zhang, Y.; Sun, R.; Wong, C. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 2017, 9, 26314. [Google Scholar] [CrossRef]
- Liu, S.; Lu, J.; Shieh, H. Influence of Permittivity on the Sensitivity of Porous Elastomer-Based Capacitive Pressure Sensors. IEEE Sens. J. 2018, 18, 1870. [Google Scholar] [CrossRef]
- Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Karimi, Z.; Roushani, M. Surface-Renewable AgNPs/CNT/rGO Nanocomposites as Bifunctional Impedimetric Sensors. Nano-Micro Lett. 2017, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Boissy, P.; Genest, J.; Patenaude, J.; Poirier, M.; Chenel, V.; Beland, J.; Legault, G.; Bernier, L.; Tapin, D.; Beauvais, J. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation. IEEE Eng. 2011, 7, 5824. [Google Scholar]
- Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward “Invisible” Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845. [Google Scholar] [CrossRef]
- Jia, J.; Huang, G.; Deng, J.; Pan, K. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale 2019, 11, 4258. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Lou, Z.; Chen, S.; Shen, G. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 2018, 61, 1587. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, A.; Lee, S.W.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes, Nature nanotechnologies. Nat. Nanotech. 2017, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, N.; Zhao, S.; Yuan, Z.; Wang, J.; Du, X.; Wang, B.; Cao, R.; Li, X.; Xu, W.; et al. A Breathable and Screen-Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Adv. Mater. Technol. 2018, 3, 1700241. [Google Scholar] [CrossRef]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 2, 1700136. [Google Scholar] [CrossRef] [Green Version]
- Fornasiero, F. Water vapor transport in carbon nanotube membranes and application in breathable ability and protective fabrics. Curr. Opin. Chem. Eng. 2017, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Zhang, M.; Xu, Y.; Yu, J.; Ding, B. Tailoring Water-Resistant and breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane. ACS Appl. Mater. Interfaces 2016, 8, 27218. [Google Scholar] [CrossRef]
- Wang, Q.; Jian, M.; Wang, C.; Zhang, Y.Y. Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Adv. Funct. Mater. 2017, 27, 1605657. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X.; Si, Y.; Wang, X.F.; Yu, J.Y.; Ding, B. Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromol. Rapid Commun. 2019, 40, 1800931. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, B.; Zheng, G.; Liu, X.; Li, T.; Yan, C.; Cheng, C.; Dai, K.; Liu, C.; Shen, C.; et al. Continuously Prepared Highly Conductive and Stretchable SWNTs/MWNTs Synergistically Composited Electrospun Thermoplastic Polyurethane Yarns for Wearable Sensing. J. Mater. Chem. C 2018, 6, 2258. [Google Scholar] [CrossRef]
- Fang, C.; Lei, W.; Zhou, X.; Yu, Q.; Cheng, Y. Preparation and characterization of waterborne polyurethane containing PET waste/PPG as soft segment. J. Appl. Polym. Sci. 2015, 132, 42757. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Y.; Zhang, G.; Deng, L.; Li, J.; Sun, R.; Wong, C. Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon 2015, 86, 225. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, L.; Li, J.; Li, N.; Zhang, G.; Gao, Y.; Li, J.; Cao, D.; Wang, W.; Jin, Y.; et al. Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small 2017, 13, 1700944. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Wang, J.; Ma, Z.; Yan, K.; Wang, Y.; Wang, H.; Li, S.; Li, Y.; Pan, L.; Shi, Y. Flexible Pressure Sensor with High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron Device Lett. 2018, 39, 288. [Google Scholar] [CrossRef]
Pressure Stage | (Stage1) 9.0 × 10−3 ~ 0.98 kPa | (Stage2) 0.98 ~ 9.8 kPa | (Stage3) 9.8 ~ 49 kPa | |
---|---|---|---|---|
Sample | ||||
AgNWs/TPU-0.2 mL | 2.02 kPa−1 | 0.19 kPa−1 | 0.03 kPa−1 | |
AgNWs/TPU-0.5 mL | 2.06 kPa−1 | 0.21 kPa−1 | 0.03 kPa−1 | |
AgNWs/TPU-1.0 mL | 2.74 kPa−1 | 0.26 kPa−1 | 0.04 kPa−1 | |
AgNWs/TPU-4.0 mL | 7.24 kPa−1 | 0.52 kPa−1 | 0.15 kPa−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lou, Y.; Wang, B.; Sun, Q.; Zhou, M.; Li, X. Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer. Sensors 2020, 20, 2459. https://doi.org/10.3390/s20092459
Wang J, Lou Y, Wang B, Sun Q, Zhou M, Li X. Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer. Sensors. 2020; 20(9):2459. https://doi.org/10.3390/s20092459
Chicago/Turabian StyleWang, Jie, Yaoyuan Lou, Bin Wang, Qing Sun, Mingwei Zhou, and Xiuyan Li. 2020. "Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer" Sensors 20, no. 9: 2459. https://doi.org/10.3390/s20092459
APA StyleWang, J., Lou, Y., Wang, B., Sun, Q., Zhou, M., & Li, X. (2020). Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer. Sensors, 20(9), 2459. https://doi.org/10.3390/s20092459