Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review
Abstract
:1. Introduction
2. Transduction Mechanisms of Gas and VOC MOF Sensors
3. Gas Sensors Based on MOFs
3.1. MOF Gas Sensors Based on Absorption Bands
3.2. MOF Gas Sensors Based on of Effective Refractive Index Variations in the Surrounding Medium
4. Humidity Sensors Based on MOFs
4.1. MOF RH Sensors Based on Humidity Absorption Lines
4.2. RH Sensors Based on Effective Refractive Index Changes of the Surrounding Medium
5. VOC Sensors Based on MOFs
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OFS | optical fiber sensors |
VOCs | volatile organic compounds |
MOFs | microstructured optical fibers |
PCFs | photonic crystal fibers |
SC-PCFs | solid core PCFs |
HC-PCFs | hollow core PCFs |
TIR | total internal reflection |
PBG | photonic band gap |
SSCs | suspended core fibers |
MZ | Mach–Zehnder |
FP | Fabry–Pérot |
SMF | single-mode fiber |
MMF | multi-mode fiber |
mPOFs | microstructured polymer optical fiber |
GVD | group velocity dispersion |
LOD | limit of detection |
ITO | indium tin oxide |
SnO2 | tin dioxide |
PAH | poly(allylamine hydrochloride) |
PAA | poly(acrylic acid) |
Ppm/ppb/ppt | parts per millon/billion/trillion |
FEM | finite element method |
SPR | surface plasmon resonance |
LbL | layer-by-layer nanoassembly |
Al2O3 | alumina |
PSS | poly(sodium-p-styrenesulfonate) |
PVA | polyvinyl alcohol |
THF | tetrahydrofuran |
FFT | fast fourier transform |
OA | optical adhesive |
FBGs | fiber bragg gratings |
LPGs | long period grattings |
GQDs | graphene quantum dots |
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2013–2015). Anal. Chem. 2015, 88, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Vurek, G. Fiber-optic sensors for biomedical applications. Science 1984, 224, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Kersey, A.D.; Dandridge, A. Applications of Fiber-optic Sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 1990, 13, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Tsutaho, A.; Nakamura, T.; Tsuchikawa, T.; Noji, T.; Nakanishi, Y.; Tanaka, K.; Murakami, S.; Ebihara, Y.; Shichinohe, T.; Asano, T.; et al. Delayed Gastric Emptying in Side-to-Side Gastrojejunostomy in Pancreaticoduodenectomy: Result of a Propensity Score Matching. J. Gastrointest. Surg. 2017, 21, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Arregui, F.J.; Del Villar, I.; Corres, J.; Goicoechea, J.; Ruiz-Zamarreño, C.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.; Urrutia, A.; et al. Fiber-optic Lossy Mode Resonance Sensors. Procedia Eng. 2014, 87, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Elosua, C.; Arregui, F.J.; Del Villar, I.; Ruiz-Zamarreño, C.; Corres, J.; Bariain, C.; Goicoechea, J.; Hernaez, M.; Rivero, P.J.; Socorro, A.; et al. Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors 2017, 17, 2312. [Google Scholar] [CrossRef] [Green Version]
- Perez-Herrera, R.A.; Lopez-Amo, M. Fiber optic sensor networks. Opt. Fiber Technol. 2013, 19, 689–699. [Google Scholar] [CrossRef]
- Russell, P.S.J. Photonic band gaps. Phys. World 1992, 5, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, P.; Astle, H.W. Low-Loss Single-Material Fibers Made From Pure Fused Silica. Bell Syst. Tech. J. 1974, 53, 1021–1039. [Google Scholar] [CrossRef]
- Calo, G.; D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Prudenzano, F. Microstructured Optical Fiber Sensors. In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2017; IEEE Xplore.: Piscataway, NJ, USA, 2007; Volume 2, pp. 180–183. [Google Scholar] [CrossRef]
- Liu, Z.; Tam, H.Y.; Htein, L.; Tse, M.-L.V.; Lu, C. Microstructured Optical Fiber Sensors. J. Light. Technol. 2017, 35, 3425–3439. [Google Scholar] [CrossRef]
- Monro, T.M.; Belardi, W.; Furusawa, K.; Baggett, J.C.; Broderick, N.G.R.; Richardson, D. Sensing with microstructured optical fibres. Meas. Sci. Technol. 2001, 12, 854–858. [Google Scholar] [CrossRef]
- Monro, T.M.; Warren-Smith, S.; Schartner, E.P.; François, A.; Heng, S.; Ebendorff-Heidepriem, H.; Afshar, S. Sensing with suspended-core optical fibers. Opt. Fiber Technol. 2010, 16, 343–356. [Google Scholar] [CrossRef]
- Frazão, O.; Silva, R.M.; Ferreira, M.S.; Santos, J.L.; Ribeiro, A.L. Suspended-core fibers for sensing applications. Photonic Sens. 2012, 2, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Frazão, O.; Baptista, J.; Santos, J.L.; Roy, P. Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Appl. Opt. 2008, 47, 2520–2523. [Google Scholar] [CrossRef]
- Shi, Q.; Lv, F.; Wang, Z.; Jin, L.; Hu, J.J.; Liu, Z.; Kai, G.; Dong, X. Environmentally Stable Fabry–PÉrot-Type Strain Sensor Based on Hollow-Core Photonic Bandgap Fiber. IEEE Photonics Technol. Lett. 2008, 20, 237–239. [Google Scholar] [CrossRef]
- Villatoro, J.; Minkovich, V.P.; Monzón-Hernández, D. Temperature-independent strain sensor made from tapered holey optical fiber. Opt. Lett. 2006, 31, 305–307. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements. Appl. Opt. 2011, 50, 2628–2635. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Lv, R.-Q.; Ying, Y.; Wang, Q. Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Opt. Laser Technol. 2012, 44, 899–902. [Google Scholar] [CrossRef]
- Shinde, Y.; Gahir, H.K. Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. IEEE Photonics Technol. Lett. 2008, 20, 279–281. [Google Scholar] [CrossRef]
- Ceballos-Herrera, D.E.; Torres-Gomez, I.; Martinez-Rios, A.; García, L.; Sanchez-Mondragon, J.J. Torsion Sensing Characteristics of Mechanically Induced Long-Period Holey Fiber Gratings. IEEE Sens. J. 2010, 10, 1200–1205. [Google Scholar] [CrossRef]
- Martelli, C.; Canning, J.; Kristensen, M.; Groothoff, N. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction. Sensors 2007, 7, 2492–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.B.; Pedersen, L.H.; Hoiby, P.E.; Nielsen, L.B.; Hansen, T.P.; Folkenberg, J.R.; Riishede, J.; Noordegraaf, D.; Nielsen, K.; Carlsen, A.; et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 2004, 29, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Town, G.; Chaplin, R.M.; Withford, M.J.; Baer, D. Randomly microstructured polymer optical fibre. In Proceedings of the ACOFT/AOS 2006-Australian Conference on Optical Fibre Technology/Australian Optical Society, Melbourne, VIC, Australia , 10–13 July 2014; Volume 204, pp. 102–103. [Google Scholar] [CrossRef]
- Woyessa, G.; Pedersen, J.K.M.; Fasano, A.; Nielsen, K.; Markos, C.; Rasmussen, H.K.; Bang, O. Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Opt. Lett. 2017, 42, 1161. [Google Scholar] [CrossRef]
- Min, R.; Ortega, B.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.; Antunes, P.F.D.C.; Marques, C. Microstructured PMMA POF chirped Bragg gratings for strain sensing. Opt. Fiber Technol. 2018, 45, 330–335. [Google Scholar] [CrossRef]
- Cox, F.M.; Lwin, R.; Large, M.C.J.; Cordeiro, C.M.D.B. Opening up optical fibres. Opt. Express 2007, 15, 11843. [Google Scholar] [CrossRef]
- Pereira, L.; Pospori, A.; Antunes, P.F.D.C.; Domingues, M.F.; Marques, S.; Bang, O.; Webb, D.; Marques, C. Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. J. Light. Technol. 2017, 35, 5176–5184. [Google Scholar] [CrossRef] [Green Version]
- Argyros, A. Structure, Properties and Characteristics of Optical Fibres; Woodhead Publishing: Sawston, UK, 2009; Volume 2, pp. 458–484. [Google Scholar] [CrossRef]
- Argyros, A. Microstructured Polymer Optical Fibers. J. Light. Technol. 2009, 27, 1571–1579. [Google Scholar] [CrossRef]
- Birks, T.; Knight, J.; Russell, P.S. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.S. Photonic-Crystal Fibers. J. Lightwave Technol. 2006, 24, 4729–4749. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Lopez-Amo, M. Photonic Crystal Fibers for Sensing Applications. J. Sens. 2012, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Li, Y.; Zhou, X.; Suzuki, T.; Ohishi, Y. Coexistence of Photonic Bandgap Guidance and Total Internal Reflection in Photonic Crystal Fiber Based on a High-Index Array with Internal Air Holes. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 265–270. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibres. Seience 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Elosua, C.; Matias, I.R.; Bariain, C.; Arregui, F.J. Volatile Organic Compound Optical Fiber Sensors: A Review. Sensors 2006, 6, 1440–1465. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sensors Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- JING, Y.Q.; JIANG, Y.; XIAO, S.H. A Differential Absorption Based Optical Fiber Methane Gas Sensing System. Acta Photonica Sin. 2014, 43, 428002. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Liu, K.; Jiang, J.; Wang, T. Intracavity multigas detection based on multiband fiber ring laser. Sens. Actuators B Chem. 2016, 226, 170–175. [Google Scholar] [CrossRef]
- Mihalcea, R.M.; Baer, D.S.; Hanson, R.K. A diode-laser absorption sensor system for combustion emission measurements. Meas. Sci. Technol. 1998, 9, 327–338. [Google Scholar] [CrossRef]
- Ebert, V.; Teichert, H.; Strauch, P.; Kolb, T.; Seifert, H.; Wolfrum, J. Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers. Proc. Combust. Inst. 2005, 30, 1611–1618. [Google Scholar] [CrossRef]
- Sur, R.; Peng, W.Y.; Strand, C.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K.; Bekal, A.; Halder, P.; Poonacha, S.P.; Vartak, S.; et al. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 364–374. [Google Scholar] [CrossRef]
- Gao, H.; Xie, L.; Gong, P.; Wang, H. Detection of Ethanol Using a Tunable Interband Cascade Laser at 3.345 μm. Photonic Sens. 2018, 8, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Bendana, F.; Lee, D.D.; Schumaker, S.A.; Danczyk, S.A.; Spearrin, R.M. Cross-band infrared laser absorption of carbon monoxide for thermometry and species sensing in high-pressure rocket flows. Appl. Phys. A 2019, 125, 204. [Google Scholar] [CrossRef]
- Leandro, D.; Bravo, M.; Ortigosa, A.; Lopez-Amo, M. Real-Time FFT Analysis for Interferometric Sensors Multiplexing. J. Light. Technol. 2015, 33, 354–360. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, T.; Zhang, W. Integrated FPI-FBG composite all-fiber sensor for simultaneous measurement of liquid refractive index and temperature. Opt. Lasers Eng. 2018, 111, 167–171. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Lv, R.-Q.; Zhao, J. Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Opt. Lasers Eng. 2019, 117, 7–20. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent Developments in Micro-Structured Fiber Optic Sensors. Fibers 2017, 5, 3. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Timmer, B.; Olthuis, W.; Berg, A.V.D. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Ajani, K. Triage; a literature review of key concepts. J. Pak Med. Assoc. 2012, 62, 487–489. [Google Scholar]
- Hoo, Y.L.; Jin, W.; Shi, C.; Ho, H.L.; Wang, D.N.; Ruan, S.C. Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 2003, 42, 3509–3515. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.; Knabe, K.; Faheem, M.; Naweed, A.; Weaver, L.; Corwin, K.L. Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 2006, 31, 2489–2491. [Google Scholar] [CrossRef]
- Hoo, Y.; Jin, W.; Ho, H.; Ju, J.; Wang, D. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B Chem. 2005, 105, 183–186. [Google Scholar] [CrossRef]
- Jin, W.; Cao, Y.; Yang, F.; Ho, S.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6, 6767. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Yang, F.; Ho, H.L. High finesse hollow-core fiber resonating cavity for high sensitivity gas sensing application. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017; Volume 10323, p. 103230A. [Google Scholar]
- Austin, E.; Van Brakel, A.; Petrovich, M.N.; Richardson, D. Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. Sensors Actuators B Chem. 2009, 139, 30–34. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.-Y.; Song, Z.-Y.; Han, Y.; Zhou, X.; Zhou, G.-Y.; Hou, L.-T. Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers. Appl. Opt. 2007, 46, 5183–5188. [Google Scholar] [CrossRef]
- Pickrell, G.; Peng, W.; Wang, A. Random-hole optical fiber evanescent-wave gas sensing. Opt. Lett. 2004, 29, 1476–1478. [Google Scholar] [CrossRef]
- Hoo, Y.L. Evanescent-wave gas sensing using microstructure fiber. Opt. Eng. 2002, 41, 8. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, A.P.; Ma, G.; Wang, B.; Kim, B.; Im, J.; He, S.; Chung, Y. Fiber-Optic Acetylene Gas Sensor Based on Microstructured Optical Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 2011, 23, 1588–1590. [Google Scholar] [CrossRef]
- Webb, A.S.; Poletti, F.; Richardson, D.; Sahu, J.K. Suspended-core holey fiber for evanescent-field sensing. Opt. Eng. 2007, 46, 010503. [Google Scholar] [CrossRef]
- Kassani, S.H.; Park, J.; Jung, Y.; Kobelke, J.; Oh, K. Fast response in-line gas sensor using C-type fiber and Ge-doped ring defect photonic crystal fiber. Opt. Express 2013, 21, 14074–14083. [Google Scholar] [CrossRef]
- Parry, J.P.; Griffiths, B.C.; Gayraud, N.; McNaghten, E.D.; Parkes, A.M.; MacPherson, W.N.; Hand, D. Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 2009, 20, 75301. [Google Scholar] [CrossRef]
- Cubillas, A.; Lázaro, J.; Silva-Lopez, M.; Conde, O.M.; Petrovich, M.; López-Higuera, J.M. Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell. Electron. Lett. 2008, 44, 403–405. [Google Scholar] [CrossRef]
- Hoo, Y.; Liu, S.; Ho, H.L.; Jin, W. Fast Response Microstructured Optical Fiber Methane Sensor with Multiple Side-Openings. IEEE Photonics Technol. Lett. 2010, 22, 296–298. [Google Scholar] [CrossRef]
- Cubillas, A.M.; Silva-Lopez, M.; Lazaro, J.M.; Conde, O.M.; Petrovich, M.N.; López-Higuera, J.M. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 2007, 15, 17570–17576. [Google Scholar] [CrossRef]
- Sardar, R.; Faisal, M. Gas sensor based on octagonal hollow core photonic crystal Fiber. In Proceedings of the International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Dhaka, Bangladesh, 13–14 February 2017; IEEE Xplore.: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Islam, I.; Paul, B.K.; Ahmed, K.; Hasan, R.; Chowdhury, S.; Islam, S.; Sen, S.; Bahar, A.N.; Asaduzzaman, S. Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications. Sens. Bio-Sensing Res. 2017, 14, 30–38. [Google Scholar] [CrossRef]
- Kornaszewski, L.; Gayraud, N.; Stone, J.; MacPherson, W.N.; George, A.K.; Knight, J.; Hand, D.; Reid, D.T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Opt. Express 2007, 15, 11219. [Google Scholar] [CrossRef]
- Hurwitz, L.B. Getting a Read on Ready to Learn Media: A Meta-analytic Review of Effects on Literacy. Child Dev. 2018, 90, 1754–1771. [Google Scholar] [CrossRef]
- Pennetta, R.; Xie, S.; Lenahan, F.; Mridha, M.; Novoa, D.; Russell, P.S. Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell. Phys. Rev. Appl. 2017, 8, 014014. [Google Scholar] [CrossRef]
- Minkovich, V.P.; Monzón-Hernández, D.; Villatoro, J.; Badenes, G. Microstructured optical fiber coated with thin films for gas and chemical sensing. Opt. Express 2006, 14, 8413–8418. [Google Scholar] [CrossRef]
- Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D. Improved sensitivity gas detection by spontaneous Raman scattering. Appl. Opt. 2009, 48, 4424–4429. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Peng, L.; Yuan, L.; Teng, P.; Tian, F.; Li, L.; Luo, S. Oxygen gas optrode based on microstructured polymer optical fiber segment. Opt. Commun. 2011, 284, 3462–3466. [Google Scholar] [CrossRef]
- Ding, H.; Li, X.; Cui, J.; Yang, L.; Dong, S. An all-fiber gas sensing system using hollow-core photonic bandgap fiber as gas cell. Instrum. Sci. Technol. 2011, 39, 78–87. [Google Scholar] [CrossRef]
- Levy, M. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions. Icarus 2000, 145, 609–613. [Google Scholar] [CrossRef]
- Henningsen, J.; Hald, J.; Peterson, J.C. Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. Opt. Express 2005, 13, 10475–10482. [Google Scholar] [CrossRef]
- Ritari, T.; Tuominen, J.; Ludvigsen, H.; Petersen, J.; Hansen, T.P.; Simonsen, H.R.; Sørensen, T. Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 2004, 12, 4080–4087. [Google Scholar] [CrossRef]
- Paul, B.K.; Rajesh, E.; Asaduzzaman, S.; Islam, S.; Ahmed, K.; Amiri, I.; Zakaria, R. Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results Phys. 2018, 11, 643–650. [Google Scholar] [CrossRef]
- Hao, Y.; Xiao, L. Exposed antiresonant nodeless hollow core photonic crystal fiber for fast-response gas sensing. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Ranka, J.K.; Windeler, R.S.; Stentz, A.J. Optical properties of high-delta air silica microstructure optical fibers. Opt. Lett. 2000, 25, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, S.; Paul, B.K.; Ahmed, K. Enhancement of sensitivity and birefringence of a gas sensor on micro-core based photonic crystal fiber. In Proceedings of the 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 22–24 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lehmann, H.; Kobelke, J.; Schuster, K.; Willsch, R.; Bartelt, H.; Amezcua-Correa, R.; Knight, J. Gas sensing with suspended core fibres and hollow core band gap fibres: A comparative study. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 5 October 2009; Volume 7503, p. 75035. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Wang, Q.; Li, H.; Ding, Y.; Zhu, C. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Opt. Fiber Technol. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Shao, Z.; Qiao, X.; Rong, Q. Highly Sensitive Intensity-Interrogated Gas Refractometer Using Slotted Photonic Crystal Fiber. IEEE Sens. J. 2018, 18, 9263–9270. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Sharma, G.; Rathore, A.S.; Jha, R. Hypersensitive and Selective Interferometric Nose for Ultratrace Ammonia Detection with Fast Response Utilizing PANI@SnO2 Nanocomposite. ACS Photon. 2018, 5, 4402–4412. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Photonic Crystal Fiber Interferometer for Dew Detection. J. Light. Technol. 2011, 30, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.Y.M.; Khalili, N.; Skinner, I.; Peng, G.-D. Optical humidity sensor based on air guided photonic crystal fiber. Photonic Sens. 2012, 2, 277–282. [Google Scholar] [CrossRef]
- Noor, M.Y.M.; Khalili, N.; Skinner, I.; Peng, G.-D. Optical relative humidity sensor based on a hollow core-photonic bandgap fiber. Meas. Sci. Technol. 2012, 23, 085103. [Google Scholar] [CrossRef]
- Noor, M.Y.M.; Kassim, N.M.; Supa’At, A.S.M.; Ibrahim, M.H.; I Azmi, A.; Abdullah, A.S.; Peng, G.-D. Temperature-insensitive photonic crystal fiber interferometer for relative humidity sensing without hygroscopic coating. Meas. Sci. Technol. 2013, 24, 105205. [Google Scholar] [CrossRef]
- Li, T.; Dong, X.; Chan, C.C.; Ni, K.; Zhang, S.; Shum, P. Humidity Sensor With a PVA-Coated Photonic Crystal Fiber Interferometer. IEEE Sens. J. 2013, 13, 2214–2216. [Google Scholar] [CrossRef]
- Wang, P.; Ni, K.; Wang, B.; Ma, Q.; Tian, W. A methylcellulose coated humidity sensor based on Mach-Zehnder interferometer with photonic crystal fiber. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Experimental demonstration of a high-sensitivity humidity sensor based on an Agarose-coated transmission-type photonic crystal fiber interferometer. Appl. Opt. 2013, 52, 3884–3890. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, H.; Lim, K.-S.; Ahmad, H.; Rong, Q.; Tian, Q.; Ding, X. Temperature-independent hygrometry using micromachined photonic crystal fiber. Appl. Opt. 2018, 57, 4237–4244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, X.; Li, T.; Chan, C.C.; Shum, P. Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating. Opt. Commun. 2013, 303, 42–45. [Google Scholar] [CrossRef]
- Gao, R.; Jiang, Y.; Ding, W. Agarose gel filled temperature-insensitive photonic crystal fibers humidity sensor based on the tunable coupling ratio. Sensors Actuators B Chem. 2014, 195, 313–319. [Google Scholar] [CrossRef]
- Tong, R.-J.; Zhao, Y.; Chen, M.-Q.; Peng, Y. Relative humidity sensor based on small up-tapered photonic crystal fiber Mach–Zehnder interferometer. Sens. Actuators A Phys. 2018, 280, 24–30. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer. Opt. Express 2013, 21, 6313–6320. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Enhancing sensitivity of photonic crystal fiber interferometric humidity sensor by the thickness of SnO2 thin films. Sens. Actuators B Chem. 2017, 251, 1059–1067. [Google Scholar] [CrossRef]
- Hindal, S.S.; Taher, H.J. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer. J. Phys. Conf. Ser. 2018, 1003, 012072. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Rajan, G.; Farrell, G. Humidity sensor based on photonic crystal fibre interferometer. Electron. Lett. 2010, 46, 1341. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Relative Humidity Sensor Based on an Agarose-Infiltrated Photonic Crystal Fiber Interferometer. IEEE J. Sel. Top. Quantum Electron. 2011, 18, 1553–1559. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Fiber Optic Hybrid Device for Simultaneous Measurement of Humidity and Temperature. IEEE Sens. J. 2013, 13, 1632–1636. [Google Scholar] [CrossRef]
- Villatoro, J.; Finazzi, V.; Pruneri, V. Functional photonic crystal fiber sensing devices. SPIE/OSA/IEEE Asia Commun. Photonics 2011, 8307, 83071. [Google Scholar] [CrossRef]
- Noor, M.Y.M.; Rajan, G.; Peng, G.-D. Microstructured Fiber Sealed-Void Interferometric Humidity Sensor. IEEE Sens. J. 2013, 14, 1154–1159. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Chen, L.H.; Li, T.; Lee, K.X.; Leong, K.W. Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 2012, 174, 563–569. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Li, T.; Chen, L.H.; Boo, J.L.; Lee, K.X.; Leong, K.W. Miniature photonic crystal optical fiber humidity sensor based on polyvinyl alcohol. In Proceedings of the SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 15–19 October 2012; p. 84216C. [Google Scholar] [CrossRef]
- Fávero, F.C.; Villatoro, J.; Pruneri, V. Microstructured optical fiber interferometric breathing sensor. J. Biomed. Opt. 2012, 17, 37006. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, Y.; Krishnaswamy, S. Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. In Proceedings of the SPIE 8346, Smart Sensor Phenomena, Technology, Networks, and Systems Integration, San Diego, CA, USA, 11–15 March 2012; p. 83460. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, Y.; Krishnaswamy, S. Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sens. Actuators B Chem. 2013, 176, 264–274. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Chan, C.C.; Menon, R.; Balamurali, P.; Shaillender, M.; Neu, B.; Ang, X.; Zu, P.; Wong, W.; et al. Chitosan based fiber-optic Fabry–Perot humidity sensor. Sens. Actuators B Chem. 2012, 169, 167–172. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Yuan, L.; Zhou, L.; Qiao, X.; Hu, M. An Optical Fiber Fabry-Perot Interferometer Sensor for Simultaneous Measurement of Relative Humidity and Temperature. IEEE Sens. J. 2014, 15, 2891–2897. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, M.; Sui, Q.; Geng, X. Optical fibre Fabry–Perot relative humidity sensor based on HCPCF and chitosan film. J. Mod. Opt. 2016, 63, 1668–1674. [Google Scholar] [CrossRef]
- Sui, Q.M.; Jiang, M.S.; Jin, Z.W.; Zhang, F.Y.; Cao, Y.Q.; Jia, L. Optical Fiber Relative Humidity Sensor Based on Fabry-Perot Interferometer Coated with Sodium-p-styrenesulfonate/Allyamine Hydrochloride Films. Sens. Mater. 2014, 26, 291–298. [Google Scholar]
- Zhao, Y.; Tong, R.-J.; Chen, M.-Q.; Peng, Y. Relative humidity sensor based on Vernier effect with GQDs-PVA un-fully filled in hollow core fiber. Sens. Actuators A Phys. 2019, 285, 329–337. [Google Scholar] [CrossRef]
- Li, T.; Zhao, C.-L.; Dong, X.; Qian, W.; Jin, Y.; Jin, S. Relative humidity sensor based on photonic crystal fiber with tapered and filled in polymer. Asia Commun. Photonics Conf. Exhib. 2010, 288–289. [Google Scholar] [CrossRef]
- Aldaba, A.L.; Lopez-Torres, D.; Elosua, C.; Auguste, J.-L.; Jamier, R.; Roy, P.; Arregui, F.; Lopez-Amo, M. SnO 2 -MOF-Fabry-Perot optical sensor for relative humidity measurements. Sens. Actuators B Chem. 2018, 257, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Aldaba, A.L.; Lopez-Torres, D.; Campo-Bescós, M.A.; López, J.J.; Yerro, D.; Elosua, C.; Arregui, F.J.; Auguste, J.L.; Jamier, R.; Roy, P.; et al. Comparison between Capacitive and Microstructured Optical Fiber Soil Moisture Sensors. Appl. Sci. 2018, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Yan, G.; Lian, Z.; Chen, X.; Wu, S.; He, S. Hybrid-cavity fabry-perot interferometer for multi-point relative humidity and temperature sensing. Sens. Actuators B Chem. 2018, 255, 1937–1944. [Google Scholar] [CrossRef]
- Jin, W.; Ho, H.; Cao, Y.; Ju, J.; Qi, L. Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 2013, 19, 741–759. [Google Scholar] [CrossRef] [Green Version]
- Kriesel, J.M.; Makarem, C.N.; Phillips, M.C.; Moran, J.; Coleman, M.L.; Christensen, L.E.; Kelly, J.F. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell. Next-Gener. Spectrosc. Technol. X 2017, 10210, 1021003. [Google Scholar] [CrossRef]
- Charlton, C.; Temelkuran, B.; Dellemann, G.; Mizaikoff, B. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl. Phys. Lett. 2005, 86, 194102. [Google Scholar] [CrossRef]
- Villatoro, J.; Kreuzer, M.P.; Jha, R.; Minkovich, V.P.; Finazzi, V.; Badenes, G.; Pruneri, V. High-sensitivity photonic crystal fiber interferometer for chemical vapors detection. In Proceedings of the SPIE 7316, Fiber Optic Sensors and Applications VI, 73161A, Orlando, FL, USA, 13–17 April 2009. [Google Scholar] [CrossRef]
- Villatoro, J.; Kreuzer, M.P.; Jha, R.; Minkovich, V.P.; Finazzi, V.; Badenes, G.; Pruneri, V. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 2009, 17, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Ahn, J.-C.; Chung, P.-S. Microstructured optical fiber-based micro-cavity sensor for chemical detection. In Proceedings of the SPIE 8938, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIV, San Francisco, CA, USA, 1–6 February 2014; p. 89380L. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, C.; Kang, J.; Jin, S.; Guo, J.; Wei, H. A chemical vapor sensor based on Rayleigh scattering effect in simplified hollow-core photonic crystal fibers. Opt. Commun. 2014, 313, 243–247. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, C.; Kang, J.; Ye, M.-P. Modal interferometer based on volatile organic compounds diffused in a simplified hollow-core photonic crystal fiber. In Proceedings of the SPIE 9044, International Conference on Optical Instruments and Technology: Optical Sensors and Applications, Beijing, China, 17–19 November 2013. [Google Scholar] [CrossRef]
- Lopez-Aldaba, A.; Lopez-Torres, D.; Aguado, C.E.; Arregui, F.J.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M. Real Time Measuring System of Multiple Chemical Parameters Using Microstructured Optical Fibers Based Sensors. IEEE Sens. J. 2018, 18, 5343–5351. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Torres, D.; Lopez-Aldaba, A.; Elosua, C.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors 2018, 18, 2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Gas | Sensitivity | LOD |
---|---|---|---|
[56] | C2H2 | - | 6 ppm |
[57] | C2H2 | - | 2 ppb |
[60] | C2H2 | - | 7ppm |
[61] | C2H2 | - | 100 ppm (m/m) |
[65] | C2H2 | 0.022dB/% | - |
[68] | C2H2 | - | 0.05 % of saturated atmosphere |
[69] | CH4 | - | 49 ppm (v/v) |
[70] | CH4 | - | 647 ppm (v/v) |
[71] | CH4 | - | 10 ppm (v/v) |
[74] | CH4 | - | below 0.1% of saturated atmosphere |
[75] | H2 | - | 17 ppm (m/m) |
[78] | N2 | - | 100 ppm (m/m) |
[80] | C2 H2H2 | - | 5 ppm (m/m) 300 ppm (m/m) |
[89] | CH4 H2 | −1.99 nm/% −0.19 nm/% | - - |
[90] | N2 | −827.94 dB/RIU | - |
[91] | NH3 | - | 8.09 ppt |
AC-PCFI | Average Red Peak Shift of the Coated PCFI Relative to the Uncoated PCFI (nm) | Refractive Index of Coating (Deduced from the RI Response of the PCFI) | Estimated Thickness of Coating (±100 nm) in nm |
---|---|---|---|
A | 2.3 | 1.24 | 250 |
B | 3.55 | 1.28 | 400 |
C | 14.5 | 1.408 | 800 |
D | 26.6 | 1.437 | 1250 |
Reference | Sensitivity | Resolution | Range |
---|---|---|---|
[94] | - | 0.2 %RH | 0–90%RH |
[95] | 60.3 pm/%RH 188.3 pm/%RH | - | 60–80%RH 80–85%RH |
[96] | 40.9 nm/%RH | - | 20–95%RH |
[97] | 0.18 nm/%RH | - | 30–85%RH |
[98] | 0.57 nm/%RH 1.43 nm/%RH | 0.017 %RH 0.007 %RH | 40–80%RH 80–95%RH |
[99] | −0.077 dB/%RH | - | 25–80%RH |
[100] | - | 0.13 %/RH | 30–95%RH |
[101] | 2.2 dB/%RH | - | 20–80%RH |
[102] | 0.0901 nm/%RH | - | 13.77–77.87%RH |
[103] | - | 0.07 %RH | 40–90%RH |
[104] | - | 0.074 %RH | 20–95%RH |
[105] | 0.96 nm/%RH | 0.067 %RH | 20–90%RH |
[106] | 2.41 pm/%RH | - | 27–85%RH |
[107] | 6.6 pm/%RH 24 pm/%RH | - | 40–70%RH above 70%RH |
[108] | 0.14 dB/%RH | - | 14–98%RH |
[109] | 0.093 dB/%RH | - | 20–95 %RH |
[111] | 20.3 pm/%RH 61.6 pm/%RH | - | 60–80 %RH 80–95 %RH |
[113] | 0.6 nm/%RH | - | 30–90 %RH |
[116] | 0.058 nm/%RH | - | 20–54 %RH |
[117] | 0.13 nm/%RH | - | 20–95 %RH |
[118] | 0.083 nm/%RH | - | 35–95 %RH |
[119] | 0.28 nm/%RH | - | at high RH% value |
[120] | 0.008 dB/%RH | - | 5–90 %RH |
[121] | 0.456 nm/%RH | - | 19,63–78,86 %RH |
[122] | 1.25 dB/cm | - | 0–95 %RH |
[123] | 0.14 rad/%RH | 0.0026 %RH | 20–90 %RH |
[125] | −0.042 read/%RH | - | 15–90 %RH |
Reference | VOC | Sensitivity | LOD |
---|---|---|---|
[128] | C2H5Cl | - | 30 ppb (v/v) |
[130] | CH3CN THF | - | 150 ppm 820 ppm |
[131] | C3H6O | total shift of 1,3 rad | saturated atmospheres |
[132] | C2H5OH | 0.022 dB/ppm | - |
[133] | C2H5OH | total shift 2.56 nm | 250 ppm (m/m) |
[134] | CH3OH | 0.31π rad | saturated atmospheres |
[135] | C2H5OH | close to 5π rad | saturated atmospheres |
Absorption Lines | Effective Refractive Index Variations | |||||
---|---|---|---|---|---|---|
SC-PCFs | HC-PCFs | SSCs | SC-PCFs | HC-PCFs | SSCs | |
Gas sensors | C2H2: [56,62,63,64,65,88] CH4: [56,88] H2: [77] O2: [79] H2N2: [84] | C2H2: [57,58,59,60,61,67,68,80,82,83,88] CH4: [69,70,71,72,73,74,83,88] H2: [75,76] N2: [78] CO: [80] H13CN: [82,83] NH3: [83] | C2H2: [66] | CH4: [89] H2: [89] N2: [90] NH3: [91] | ||
Humidity sensors | [93,94] | [95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116] | [117,118,119,120,121,122] | [123,124,125] | ||
VOCs sensors | Aldehydes, ketones, hydrocarbons: [127] | C2H5Cl: [128] CH3CN and THF: [129,130] C3H6O: [131] | C3H6O: [131] C2H5OH: [132,133] | CH3OH: [134] C2H5OH: [135] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Torres, D.; Elosua, C.; Arregui, F.J. Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review. Sensors 2020, 20, 2555. https://doi.org/10.3390/s20092555
Lopez-Torres D, Elosua C, Arregui FJ. Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review. Sensors. 2020; 20(9):2555. https://doi.org/10.3390/s20092555
Chicago/Turabian StyleLopez-Torres, Diego, Cesar Elosua, and Francisco J. Arregui. 2020. "Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review" Sensors 20, no. 9: 2555. https://doi.org/10.3390/s20092555
APA StyleLopez-Torres, D., Elosua, C., & Arregui, F. J. (2020). Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds—A Review. Sensors, 20(9), 2555. https://doi.org/10.3390/s20092555