Monitoring of Processing Conditions of an Ultrasonic Vibration-Assisted Ball-Burnishing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Monitoring of the UVABB Force
2.3. Monitoring of Vibrations during UVABB
- Feed velocity during linear tool displacement .
- Nominal preload force . This term refers to the amount of force excerted due to the precompression of the tool with the milling machine of the surface, consequence of spring compression. It is expressed like this to differentiate it to the actual burnishing force, which can vary during the NVABB and UVABB process due to different sources.
- Number of passes on the same target surface n.
- Activation of the vibrations (ON) or not (OFF), i.e., vibration-assisted process or not, respectively.
2.4. Impact Tests
3. Result Discussion
3.1. Impact Tests
3.2. Vibration Monitoring
3.3. Monitoring of the Burnishing Force
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FRF | Frequency response function |
NVABB | Non-vibration-assisted ball burnishing |
UVABB | Ultrasonic vibration-assisted ball burnishing |
VABB | Vibration-assisted ball burnishing |
References
- Travieso-Rodriguez, J.A.; Gomez-Gras, G.; Dessein, G.; Carrillo, F.; Alexis, J.; Jorba-Peiro, J.; Aubazac, N. Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int. J. Adv. Manuf. Technol. 2015, 81, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.; Sartkulvanich, P.; Altan, T. Finite element modeling of roller burnishing process. CIRP Ann. 2005, 54, 237–240. [Google Scholar] [CrossRef]
- Gomez-Gras, G.; Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Lluma-Fuentes, J.; de la Calle, B.G. Experimental study of lateral pass width in conventional and vibrations-assisted ball burnishing. Int. J. Adv. Manuf. Technol. 2016, 87, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Travieso-Rodríguez, J.A.; Dessein, G.; González-Rojas, H.A. Improving the surface finish of concave and convex surfaces using a ball burnishing process. Mater. Manuf. Process. 2011, 26, 1494–1502. [Google Scholar] [CrossRef]
- Hiegemann, L.; Weddeling, C.; Khalifa, N.B.; Tekkaya, A. Prediction of roughness after ball burnishing of thermally coated surfaces. J. Mater. Process. Technol. 2015, 217, 193–201. [Google Scholar] [CrossRef]
- Amini, S.; Bagheri, A.; Teimouri, R. Ultrasonic-assisted ball burnishing of aluminum 6061 and AISI 1045 steel. Mater. Manuf. Process. 2018, 33, 1250–1259. [Google Scholar] [CrossRef]
- Kozlov, A.; Mordyuk, B.; Chernyashevsky, A. On the additivity of acoustoplastic and electroplastic effects. Mater. Sci. Eng. A 1995, 190, 75–79. [Google Scholar] [CrossRef]
- Siu, K.; Ngan, A.; Jones, I. New insight on acoustoplasticity–ultrasonic irradiation enhances subgrain formation during deformation. Int. J. Plast. 2011, 27, 788–800. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Landon, Y.; Travieso-Rodriguez, J.A.; Dessein, G.; Lluma-Fuentes, J.; Wagner, V. Topological surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surf. Coatings Technol. 2018, 349, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Pequegnat, A.; Chang, B.; Mayer, M.; Du, D.; Zhou, Y. Influence of superimposed ultrasound on deformability of Cu. J. Appl. Phys. 2009, 106, 113514. [Google Scholar] [CrossRef]
- Liu, X.; Osawa, Y.; Takamori, S.; Mukai, T. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater. Sci. Eng. A 2008, 487, 120–123. [Google Scholar] [CrossRef]
- Yao, Z.; Kim, G.Y.; Faidley, L.; Zou, Q.; Mei, D.; Chen, Z. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J. Mater. Process. Technol. 2012, 212, 640–646. [Google Scholar] [CrossRef]
- Ashida, Y.; Aoyama, H. Press forming using ultrasonic vibration. J. Mater. Process. Technol. 2007, 187, 118–122. [Google Scholar] [CrossRef]
- Jin, M.; Murakawa, M. Development of a practical ultrasonic vibration cutting tool system. J. Mater. Process. Technol. 2001, 113, 342–347. [Google Scholar] [CrossRef]
- Moriwaki, T.; Shamoto, E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann. 1991, 40, 559–562. [Google Scholar] [CrossRef]
- Moriwaki, T.; Shamoto, E. Ultrasonic elliptical vibration cutting. CIRP Ann. 1995, 44, 31–34. [Google Scholar] [CrossRef]
- Brehl, D.; Dow, T. Review of vibration-assisted machining. Precis. Eng. 2008, 32, 153–172. [Google Scholar] [CrossRef]
- Babitsky, V.; Astashev, V.; Kalashnikov, A. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics 2004, 42, 29–35. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, E.; Ramirez, G.; Romeu, J.; Casellas, D. Damage induced by a spherical indentation test in tool steels detected by using acoustic emission technique. Exp. Mech. 2015, 55, 449–458. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Gomez-Gras, G.; Lluma-Fuentes, J. Development, characterization and test of an ultrasonic vibration-assisted ball burnishing tool. J. Mater. Process. Technol. 2018, 257, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Arnau, A. Piezoelectric Transducers and Applications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2004. [Google Scholar]
- Jerez-Mesa, R.; Travieso-Rodríguez, J.A.; Landon, Y.; Dessein, G.; Lluma-Fuentes, J.; Wagner, V. Comprehensive analysis of surface integrity modification of ball-end milled Ti-6Al-4V surfaces through vibration-assisted ball burnishing. J. Mater. Process. Technol. 2019, 267, 230–240. [Google Scholar] [CrossRef]
- Ewins, D.J. Modal Testing: Theory and Practice; Research Studies Press: Letchworth, UK, 1984; Volume 15. [Google Scholar]
- Gómez-Gras, G.; Travieso-Rodríguez, J.A.; González-Rojas, H.A.; Nápoles-Alberro, A.; Carrillo, F.J.; Dessein, G. Study of a ball-burnishing vibration-assisted process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 172–177. [Google Scholar] [CrossRef] [Green Version]
Measurement Direction | Accelerometer | Frequency Range (Hz) | Weight (g) |
---|---|---|---|
Parallel to tool axis (AH) | MMF Type KS91B | 0.3–30,000 | 1 |
Perpendicular to tool axis (AV) | Brüel and Kjær Type 4397 | 1–25,000 | 2.4 |
Workpiece’s X, Y, and Z directions | KISTLER Type 8752A50 | 0.5–5000 | 115 |
(N) | (mm/min) | Vibration | n | |||||
---|---|---|---|---|---|---|---|---|
250 | 400 | 90 | 900 | ON | OFF | 1 | 3 | 5 |
Impacted Element | Direction | Preload Force (N) | Piezoelectric Transducer |
---|---|---|---|
UVABB Tool | Vertical | Unloaded | OFF |
ON | |||
Horizontal | Unloaded | OFF | |
ON | |||
250 | OFF | ||
ON | |||
400 | OFF | ||
ON | |||
Workpiece | Vertical | Unloaded | OFF |
400 | OFF | ||
ON |
Testing Condition | 1st Frequance (Hz) | 2nd Frequance (Hz) | 3rd Frequance (Hz) | |
---|---|---|---|---|
(N) | Vibration | |||
Vertical impacts | ||||
Unloaded | OFF | 519 | 1471 | - |
ON | 519 | 1490 | - | |
Horizontal impacts | ||||
Unloaded | OFF | 284 | - | - |
ON | 584 | - | - | |
250 N | OFF | 390 | - | - |
ON | 390 | 510 | - | |
400 N | OFF | 407 | 645 | 4257 |
ON | 410 | 635 | 4231 |
Measurement Direction | Accelerometer | Measuring Condition | 1st Freq. (Hz) | 2nd Freq. (Hz) | |
---|---|---|---|---|---|
(N) | Vibration | ||||
Burnishing direction (X) | A1 | Unloaded | - | 1018 | 1766 |
A2 | 400 N | OFF | 1017 | 1761 | |
A3 | ON | 1017 | 1758 | ||
Perpendicular to burnishing direction (Y) | A1 | Unloaded | - | 1017 | 1899 |
A2 | 400 N | OFF | 1017 | - | |
A3 | ON | 1017 | - | ||
Vertical (Z) | A1 | Unloaded | - | 1016 | 2001 |
A2 | 400 N | OFF | 1017 | 2007 | |
A3 | ON | 1017 | 2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estevez-Urra, A.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Monitoring of Processing Conditions of an Ultrasonic Vibration-Assisted Ball-Burnishing Process. Sensors 2020, 20, 2562. https://doi.org/10.3390/s20092562
Estevez-Urra A, Llumà J, Jerez-Mesa R, Travieso-Rodriguez JA. Monitoring of Processing Conditions of an Ultrasonic Vibration-Assisted Ball-Burnishing Process. Sensors. 2020; 20(9):2562. https://doi.org/10.3390/s20092562
Chicago/Turabian StyleEstevez-Urra, Aida, Jordi Llumà, Ramón Jerez-Mesa, and Jose Antonio Travieso-Rodriguez. 2020. "Monitoring of Processing Conditions of an Ultrasonic Vibration-Assisted Ball-Burnishing Process" Sensors 20, no. 9: 2562. https://doi.org/10.3390/s20092562
APA StyleEstevez-Urra, A., Llumà, J., Jerez-Mesa, R., & Travieso-Rodriguez, J. A. (2020). Monitoring of Processing Conditions of an Ultrasonic Vibration-Assisted Ball-Burnishing Process. Sensors, 20(9), 2562. https://doi.org/10.3390/s20092562