Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent
Abstract
:1. Introduction
2. Experimental Setup
2.1. Nephelometer Aurora 4000
2.2. SEN0177 Optical Counter Sensor
2.3. OPC-N2 Optical Counter Sensor
2.4. Data Collection and Processing
3. Results
3.1. Comparison of PM Mass Concentration with Aerosol Scattering Coefficient
3.2. Evaluation of Scattering AE from Low-Cost Sensors
3.3. Low-Cost Sensor Characteristics
3.4. Estimation of Aerosol Temporal Variability from Low-Cost Sensors
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Sharma, A.; Sandip, M.; Tushar, K.; Jai, K.; Satish, B. Influence of atmospheric aerosols on health and environment-climate change. Int. J. Life Sci. 2013, 2019, 115–120. [Google Scholar]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Bennouna, Y.; Cachorro, V.E.; Mateos, D.; Burgos, M.A.; Toledano, C.; Torres, B.; Frutos, A.M. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment. Atmos. Environ. 2016, 140, 261–272. [Google Scholar]
- Schaap, M.; Apituley, A.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; de Leeuw, G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef] [Green Version]
- Szczepanik, D.; Markowicz, K.M. The relation between columnar and surface aerosol optical properties in a background environment. Atmos. Poll. Res. 2018, 9, 246–256. [Google Scholar] [CrossRef]
- Filip, L.; Stefan, S. Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth. J. Atmos. Solar-Terrestrial Phys. 2011, 73, 1883–1889. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellitederived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett 2003, 30, 2095. [Google Scholar] [CrossRef]
- Koelemeijer, R.B.A.; Homan, C.D.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter in Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Kumar, N.; Chu, A.; Foster, A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 2007, 41, 4492–4503. [Google Scholar] [CrossRef] [Green Version]
- de Nazelle, A.; Bode, O.; Orjuela, J.P. Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environ. Int. 2017, 99, 151–160. [Google Scholar] [CrossRef]
- Diao, M.; Holloway, T.; Choi, S.; O’Neill, S.M.; Al-Hamdan, M.Z.; x Donkelaar, M.Z.; Randall, V.M.; Jin, X.; Fiore, A.M.; Henze, D.K. Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, satellite, and atmospheric models. J. Air Waste Manag. Assoc. 2019, 69, 1391–1414. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J. Airborne Particulate Matter: Human Exposure and Health Effects. Occup. Environ. Med. 2018, 60, 392–423. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka, O.; Markowicz, K.M.; Pietruczuk, A.; Zielinski, T.; Jarosławski, J. Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos. Environ. 2013, 69, 15–28. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Guzikowski, J. Can Data Assimilation of Surface PM2.5 and Satellite AOD Improve WRF-Chem Forecasting? A Case Study for Two Scenarios of Particulate Air Pollution Episodes in Poland. Remote Sens. 2019, 11, 2364. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [Google Scholar] [CrossRef] [Green Version]
- Sič, B.; El Amraoui, L.; Piacentini, A.; Marécal, V.; Emili, E.; Cariolle, D.; Prather, M.; Attié, J.-L. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth. Atmos. Meas. Tech. 2016, 9, 5535–5554. [Google Scholar] [CrossRef] [Green Version]
- Robichaud, A. Surface data assimilation of chemical compounds over North America and its impact on air quality and Air Quality Health Index (AQHI) forecasts. Air Qual. Atmos. Health 2017, 10, 955–970. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Boies, A.; Swason, J.; Kittelson, D. Field Calibration of Low-Cost Air Pollution Sensors. In Atmos. Meas. Tech. Discuss.; 2019; in review. [Google Scholar] [CrossRef]
- Badura, M.; Bator, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. Sensors 2018, 5096540. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Kumar, P.; Pilla, F.; Skouloudis, A.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user Perspective of Low-cost Sensors for Outdoor Air Pollution Monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Tech. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Brown, S.G.; McCarthy, M.C.; Pavlovic, N.R.; Stanton, L.G.; Snyder, J.L.; D’Andrea, S.; Hafner, H.R. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors 2019, 19, 4701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [Green Version]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Ramana, M.V.; Ramanathan, V.; Kim, D.; Roberts, G.C.; Corrigan, C.E. Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Q. J. R. Meteorol. Soc. 2007, 133, 1913e1931. [Google Scholar] [CrossRef]
- Chilinski, M.T.; Markowicz, K.M.; Markowicz, J. Observation of vertical variability of black carbon concentration in lower troposphere on campaigns in Poland. Atmos. Environ. 2016, 137, 155e170. [Google Scholar] [CrossRef]
- Ferrero, L.; Riccio, A.; Perrone, M.G.; Sangiorgi, G.; Ferrini, B.S.; Bolzacchini, E. Mixing height determination by tethered balloon-based particle soundings and modeling simulations. Atmos. Res. 2011, 102, 145–156. [Google Scholar] [CrossRef]
- Mazzola, M.; Busetto, M.; Ferrero, L.; Viola, A.P.; Cappelletti, D. AGAP: An atmospheric gondola for aerosol profiling. Rend. Fis. Acc. Lincei 2016, 27, S105eS113. [Google Scholar] [CrossRef]
- Ran, L.; Deng, Z.; Xu, X.; Yan, P.; Lin, W.; Wang, Y.; Tian, P.; Wang, P.; Pan, W.; Lu, D. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmos. Chem. Phys. 2016, 16, 10441e10454. [Google Scholar] [CrossRef] [Green Version]
- Markowicz, K.M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I.S.; Cappelletti, D.; Mazzola, M.; Chilinski, M.T. Vertical variability of aerosol single-scattering albedo and black carbon concentration based on in-situ and remote sensing techniques during iAREA campaigns in Ny-Ålesund. Atmos. Environ. 2017, 164, 431–447. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, O.; Posyniak, M.; Nelken, K.; Markuszewski, P.; Chiliński, M.T.; Czyżewska, D.; Lisok, J.; Markowicz, K.M. Study of the vertical variability of the aerosol properties based on cable cars in-situ measurements. Atmos. Pollut. Res. 2017, 8, 968–978. [Google Scholar] [CrossRef]
- Chilinski, M.T.; Markowicz, K.M.; Zawadzka, O.; Stachlewska, I.S.; Lisok, J.; Makuch, P. Comparison of columnar, surface and UAS profiles of absorbing aerosol optical depth and single scattering albedo. Atmosphere 2019, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Richards, L.W. Comparability between PM2.5 and particle light scattering measurements. Environ. Monit. Assess. 2002, 79, 29–45. [Google Scholar] [CrossRef]
- Carrico, C.M.; Bergin, M.H.; Xu, J.; Baumann, K.; Maring, H. Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. J. Geophys. Res. 2003, 108, 8422. [Google Scholar] [CrossRef]
- Cappa, C.D.; Kolesar, K.R.; Zhang, X.; Atkinson, D.B.; Pekour, M.S.; Zaveri, R.A.; Zelenyuk, A.; Zhang, Q. Understanding the optical properties of ambient sub- and supermicron particulate matter: Results from the CARES 2010 field study in northern California. Atmos. Chem. Phys. 2016, 16, 6511–6535. [Google Scholar] [CrossRef] [Green Version]
- Vrekoussis, M.; Liakakou, E.; Koçak, M.; Kubilay, N.; Oikonomou, K.; Sciare, J.; Mihalopoulos, N. Seasonal variability of optical properties of aerosols in the Eastern Mediterranean. Atmos. Environ. 2005, 39, 7083–7094. [Google Scholar] [CrossRef]
- Quinn, P.K.; Miller, T.L.; Bates, T.S.; Ogren, J.A.; Andrews, E.; Shaw, G.E. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow. Alaska J. Geophys. Res. 2002, 107, 4130. [Google Scholar] [CrossRef]
- Waggoner, A.P.; Weiss, R.E. Comparison of Fine Particle Mass Concentration and Light Scattering Extinction in Ambient Aerosol. Atmos. Environ. 1980, 14, 623–626. [Google Scholar] [CrossRef]
- White, W.H.; Macias, E.S.; Ninenger, R.C.; Schorran, D. Size-Resolved Measurements of Light Scattering by Ambient Particles in the Southwestern U.S. Atmos. Environ. 1994, 28, 909–921. [Google Scholar] [CrossRef]
- Hand, J.L.; Malm, W.C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. 2007, 112, D16203. [Google Scholar] [CrossRef]
- Lowenthal, D.H.; Kumar, N. Variation of Mass Scattering Efficiencies in IMPROVE. J. Air Waste Manag. Assoc. 2004, 54, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Lee, J.Y.; Um, J.; Lee, S.S.; Yoon, Y.J.; Kim, Y.P. Estimation of Source-Based Aerosol Optical Properties for Polydisperse Aerosols from Receptor Models. Appl. Sci. 2019, 9, 1443. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.E.; Slutsker, I.; Tanre, D.; Buis, J.P. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Chilinski, M.T.; Lisok, J.; Zawadzka, O.; Stachlewska, I.S.; Janicka, L.; Rozwadowska, A.; Makuch, P.; Pakszys, P.; Zielinski, T. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013. J. Aerosol Sci. 2016, 101, 156–173. [Google Scholar] [CrossRef]
- Chamberlain-Ward, S.; Sharp, F. Advances in nephelometry through the Ecotech Aurora nephelometer. Sci. World J. 2011, 11, 2530–2535. [Google Scholar] [CrossRef]
- Müller, T.; Laborde, M.; Kassell, G.; Wiedensohler, A. Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer. Atmos. Meas. Tech. 2011, 4, 1291–1303. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.L.; Covert, D.S.; Marshall, S.F.; Laucks, M.L.; Charlson, R.J.; Waggoner, A.P.; Ogren, J.A.; Caldow, R.; Holm, R.L.; Quant, F.R.; et al. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol. 1996, 13, 967–986. [Google Scholar] [CrossRef] [Green Version]
- Migos, T.; Christakis, I.; Moutzouris, K.; Stavrakas, J. On the Evaluation of Low-Cost PM Sensors for Air Quality Estimation. In Proceedings of the 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, May 2019; pp. 1–4. [Google Scholar]
- Chee, F.P.; Angelo, S.F.; Kiu, S.L.; Justin, S.; Jackson, C.H.W. Real time particulate matter concentration measurement using laser scattering. J. Eng. Appl. Sci. 2018, 13, 8873–8879. [Google Scholar]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Tech. 2016, 50, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Giannakaki, E.; van Zyl, P.G.; Müller, D.; Balis, D.; Komppula, M. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements. Atmos. Chem. Phys. 2016, 16, 8109–8123. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.M.; Müller, D.; Lee, H.; Lee, K.; Kim, Y.J. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia. Environ. Monit. Assess. 2012, 184, 4763. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, L.; Backman, J.; Ogren, J.A.; Andrews, E.; Asmi, E.; Starkweather, S.; Uttal, T.; Fiebig, M.; Sharma, S.; Eleftheriadis, K. Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys. 2018, 18, 11599–11622. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.K.; Bergin, M.H.; Russell, A.G.; Hagler, G.S.W. Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. Aerosol Air Qual. Res. 2018, 18, 565–578. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Molnár, A.; Imre, K.; Ferenczi, Z.; Kiss, G.; Gelencsér, A. Aerosol hygroscopicity: Hygroscopic growth proxy based on visibility for low-cost PM monitoring. Atmos. Res. 2020, 236, 104815. [Google Scholar] [CrossRef]
Aurora 4000 | SEN 0177 | Linear Fit | Log-Log Fit | ||||||
---|---|---|---|---|---|---|---|---|---|
r | Slope [Mm−1/µg/m3] | Offset [Mm−1] | RMSE [Mm−1] | r | Slope | Offset | RMSE | ||
Scattering coefficient at 525 nm | PM1 | 0.91 | 7.71 ± 0.07 | −5.1 ± 0.9 | 25.1 | 0.89 | 0.72 ± 0.01 | 2.56 ± 0.02 | 0.35 |
PM2.5 | 0.93 | 5.70 ± 0.05 | −2.5 ± 0.8 | 22.1 | 0.92 | 0.77 ± 0.01 | 2.25 ± 0.02 | 0.29 | |
PM10 | 0.94 | 5.02 ± 0.04 | −1.2 ± 0.5 | 20.0 | 0.95 | 0.82 ± 0.01 | 2.06 ± 0.01 | 0.25 | |
AE * | N1/N4 | 0.74 | 1.22·10−4 ± 3·10−6 | 0.77 ± 0.02 | 0.23 | 0.75 | 0.50 ± 0.01 | −3.9 ± 0.1 | 0.23 |
Aurora 4000 | OPC-N2 | Linear Fit | Log-Log Fit | ||||||
---|---|---|---|---|---|---|---|---|---|
r | Slope [Mm−1/µg/m3] | Offset [Mm−1] | RMSE [Mm−1] | r | Slope | Offset | RMSE | ||
Scattering coefficient at 525 nm | PM1 | 0.95 | 3.41 ± 0.02 | 22.5 ± 0.5 | 18.2 | 0.98 | 0.75 ± 0.01 | 2.37 ± 0.01 | 0.17 |
PM2.5 | 0.94 | 3.00 ± 0.02 | 22.2 ± 0.5 | 19.5 | 0.97 | 0.78 ± 0.01 | 2.15 ± 0.01 | 0.18 | |
PM10 | 0.94 | 3.10 ± 0.02 | 17.1 ± 0.6 | 20.1 | 0.95 | 0.89 ± 0.01 | 1.72 ± 0.02 | 0.24 | |
Ntot | 0.96 | 1.42 ± 0.01 | 20.4 ± 0.5 | 16.7 | 0.98 | 0.75 ± 0.01 | 1.66 ± 0.02 | 0.16 | |
AE * | N1/N2 | 0.66 | 0.064 ± 0.002 | 0.64 ± 0.02 | 0.25 | 0.68 | 0.59 ± 0.01 | −1.12 ± 0.03 | 0.24 |
Sensor | Bin Ratio/Effective Radius | Bin Radius Range | r | r 95% Interval |
---|---|---|---|---|
SEN0177 | N1/N2 | N1: 0.15–0.25 µm N2: 0.25–0.50 µm N3: 0.50–1.25 µm N4: 1.25–2.50 µm N5: 2.50–5.00 µm | −0.60 | −0.61: −0.58 |
N1/N3 | 0.63 | 0.62: 0.65 | ||
N1/N4 | 0.74 | 0.73: 0.75 | ||
N1/N5 | 0.50 | 0.48: 0.51 | ||
−0.69 | −0.70: −0.68 | |||
OPC-N2 | N1/N2 | N1: 0.19–0.27 µm N2: 0.27–0.39 µm N3: 0.39–0.52 µm N4: 0.52–0.66 µm N5: 0.66–0.80 µm | 0.66 | 0.63: 0.68 |
N1/N3 | 0.38 | 0.35: 0.42 | ||
N1/N4 | 0.03 | 0.00: 0.07 | ||
N1/N5 | −0.12 | −0.21: 0.17 | ||
0.02 | −0.01: 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowicz, K.M.; Chiliński, M.T. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent. Sensors 2020, 20, 2617. https://doi.org/10.3390/s20092617
Markowicz KM, Chiliński MT. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent. Sensors. 2020; 20(9):2617. https://doi.org/10.3390/s20092617
Chicago/Turabian StyleMarkowicz, Krzysztof M., and Michał T. Chiliński. 2020. "Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent" Sensors 20, no. 9: 2617. https://doi.org/10.3390/s20092617
APA StyleMarkowicz, K. M., & Chiliński, M. T. (2020). Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent. Sensors, 20(9), 2617. https://doi.org/10.3390/s20092617