Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components
Abstract
:1. Introduction
2. Setup of the Experimental System for the Waveguide Transducer Coupling Performance Tests
2.1. Experimental Specimen
2.2. Experimental System
2.3. Effect of the Brazing Filler Metals in the Waveguide Bar
2.4. Experimental Conclusions
3. Comparison between Brazing Coupling and Dry Coupling
4. Reliability of the Waveguide Bar Using Brazing Coupling
5. Brazing Coupling Performance for High Temperature Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dou, Y.K. The aging management of the whole life cycle of the nuclear power plant. Heat Treat. Met. 2011, 36, 10–14. [Google Scholar]
- IAEA-TECDOC-1361. Assessment and Management of Ageing of Major Nuclear Power Plant Components Impartment to Safety-Primary Piping in PWRs; IAEA: Vienna, Austria, 2003; p. 6. [Google Scholar]
- Chen, Y.Q.; Zhang, S.Z.; Zhou, Z.P. Three-Dimensional Numerical Simulation Study on the Thermal Stratification of the Stabilizer. In Proceedings of the Workshop on Life Assessment and Management Technology for Nuclear Power Plants, Hangzhou, China, 11 July 2010; Volume 12, pp. 522–527. [Google Scholar]
- Peng, S.M. Failure Analysis of Nuclear Power Plant Components in Nuclear Power Plant. In Proceedings of the Workshop on Failure Analysis of Nuclear Power Plants, Qinshan, China, 7 May 2018; Volume 8, pp. 102–108. [Google Scholar]
- Yuan, S.F.; Lai, X.S.; Zhao, X.; Xu, X.; Zhang, L. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology. Smart Mater. Struct. 2006, 15, 1–8. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.L.; Su, Z.Q.; Yuan, S.; Fan, Z. Analytical insight into “breathing” crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks. Ultrasonics 2018, 88, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Travaglini, C.; Bescond, C.; Viens, M.; Belanger, P. Feasibility of high frequency guided wave crack monitoring. Struct. Health Monit. 2017, 16, 418–427. [Google Scholar] [CrossRef]
- Tittmann, B.R.; Aslan, M. Ultrasonic sensors for high temperature applications. Jpn. J. Appl. Phys. 1999, 38, 3011–3013. [Google Scholar] [CrossRef]
- Amini, M.H.; Sinclair, A.N.; Coyle, T.W. A new high-temperature ultrasonic transducer for continuous inspection. IEEE T. Ultrason. Ferr. 2016, 63, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, K.; Kibe, T.; Kobayashi, M. High temperature performance of PbTiO3/BaTiO3 ultrasonic transducer. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; p. 4. [Google Scholar]
- Herdovics, B.; Cegla, F. Long-term stability of guided wave electromagnetic acoustic transducer systems. Struct. Health Monit. 2020, 19, 3–11. [Google Scholar] [CrossRef]
- Tkocz, J.; Greenshields, D.; Dixon, S. High power phased EMAT arrays for nondestructive testing of as-cast steel. NDT E Int. 2019, 102, 47–55. [Google Scholar] [CrossRef]
- Kruger, S.E.; Lord, M.; Monchalin, J.P. Laser ultrasonic thickness measurements of very thick walls at high temperatures. AIP Conf. Proc. 2006, 820, 240–247. [Google Scholar]
- Karabutov, A.; Podimova, N. Optoacoustic tomography utilizing focused transducers: The resolution study. Appl. Phys. Lett. 2008, 92, 024105. [Google Scholar]
- Cross, N.O. Ultrasonic pulse Echo Testing Method and Apparatus. U.S. Patent 3350923, 7 November 1967. [Google Scholar]
- Zuo, P.; Zhou, Y.; Fan, Z. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections. AIP Adv. 2016, 6, 927–1010. [Google Scholar] [CrossRef] [Green Version]
- Kazys, R.; Zukauskas, E.; Mazeika, L.; Raišutis, R. Propagation of ultrasonic shear horizontal waves in rectangular waveguides. Int. J. Struct. Stab. Dy. 2016, 16, 1–18. [Google Scholar] [CrossRef]
- Heijinsdijk, A.M.; Klooster, J.M. Ultrasonic Waveguide. U.S. Patent 6400648, 4 June 2002. [Google Scholar]
- Cawley, P.; Cegla, F.B. Ultrasonic Non-Destructive Testing. U.S. Patent 8381592, 26 February 2013. [Google Scholar]
- Jia, J.H.; Wang, Q.Y.; Liao, Z.Y.; Tu, Y.; Tu, S.T. Design of waveguide bars for transmitting a pure shear horizontal wave to monitor high temperature components. Materials 2017, 10, 1027. [Google Scholar]
- Kwon, Y.E.; Jeon, H.J.; Kim, H.W.; Kim, Y.Y. Waveguide tapering for beam-width control in a waveguide transducer. Ultrasonics 2014, 54, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Q.Z.; Li, F.X. A U-shape shear horizontal waveguide sensor for on-line monitoring of liquid viscosity. Sensor Actuat. A Phys. 2018, 284, 35–41. [Google Scholar] [CrossRef]
- Lawren, C.L. Marginally Dispersive Ultrasonic Waveguides. U.S. Patent 005159838A, 3 November 1992. [Google Scholar]
- Cegla, F.B.; Cawley, P.; Allin, J.; Davies, J. High-temperature (>500 °C) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers. IEEE T. Ultrason. Ferr. 2011, 58, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Alleyne, D.N.; Cawley, P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. J. Nondestruct. Eval. 1996, 15, 11–20. [Google Scholar] [CrossRef]
- Jia, J.H.; Liao, Z.Y.; Cai, X.T.; Tu, Y.; Tu, S.T. Critical excitation of the fundamental quasi-shear mode wave in waveguide bars for elevated temperature applications. Sensors 2019, 19, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Z.Y.; Zhang, X.; Liu, T.Y.; Jia, J.H.; Tu, S.T. Characteristics of high-temperature equipment monitoring using dry-coupled ultrasonic waveguide transducers. Ultrasonics 2020, 108, 106236. [Google Scholar] [CrossRef] [PubMed]
Filler Metal | Melting Temperature(°C) |
---|---|
BAg40CdCuZn(Ni) | 595~605 |
BAg45CuZn | 665~745 |
BAg56CuZnSn | 620~655 |
Number | Filler Metal | Thickness of Waveguide Bar |
---|---|---|
1# | BAg40CdCuZn(Ni) | 1 mm |
2# | BAg45CuZn | |
3# | BAg56CuZnSn | |
4# | BAg40CdCuZn(Ni) | 2 mm |
5# | BAg45CuZn | |
6# | BAg56CuZnSn |
Times of Echo Wave of the Plate Bottom | Transmission Efficiency in Brazing Coupling | Transmission Efficiency in Dry Coupling |
---|---|---|
The first | 144% | 51.4% |
The second | 76.5% | 28.6% |
The third | 47% | / |
The fourth | 28.6 | / |
Standard Thicknesses | Measurement Errors by the Conventional Ultrasonic Transducer | Measurement Errors by the Waveguide bar System |
---|---|---|
6.210 mm | +0.67% | −1.50% |
9.840 mm | +1.02% | +0.71% |
20.104 mm | −0.49% | −0.40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.H.; Wang, Z.H.; Yao, D.F.; Tu, S.-T. Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components. Sensors 2021, 21, 94. https://doi.org/10.3390/s21010094
Jia JH, Wang ZH, Yao DF, Tu S-T. Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components. Sensors. 2021; 21(1):94. https://doi.org/10.3390/s21010094
Chicago/Turabian StyleJia, Jiu Hong, Ze Hou Wang, Dai Feng Yao, and Shan-Tung Tu. 2021. "Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components" Sensors 21, no. 1: 94. https://doi.org/10.3390/s21010094
APA StyleJia, J. H., Wang, Z. H., Yao, D. F., & Tu, S. -T. (2021). Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components. Sensors, 21(1), 94. https://doi.org/10.3390/s21010094