Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism
Abstract
:1. Introduction
2. Methods
2.1. Inverse Kinematics
2.2. Forward Kinematics
3. Design and Experiment
3.1. Avoiding Singularities
3.2. Design of Displacement Sensor
3.3. Experiment Procedure
3.4. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.; Miller, A.; Correll, N. Autonomous industrial assembly using force, torque, and RGB-D sensing. Adv. Robot. 2020, 34, 546–559. [Google Scholar] [CrossRef]
- Ma, Y.; Du, K.; Zhou, D.; Zhang, J.; Liu, X.; Xu, D. Automatic precision robot assembly system with microscopic vision and force sensor. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419851619. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Shi, S.; Wang, D.; Liu, H. A Strategy for Large Workpiece Assembly Based on Hybrid Impedance Control. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 799–804. [Google Scholar]
- Park, D.I.; Kim, H.; Park, C.; Kim, B.; Kim, D.; Kyung, J.H. Variable passive compliance device for the robotic assembly. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 27 July 2017. [Google Scholar]
- Wang, S.; Chen, G.; Xu, H.; Wang, Z. A robotic peg-in-hole assembly strategy based on variable compliance center. IEEE Access 2019, 7, 167534–167546. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.; Kim, D.; Yun, D. Shock Resistive Flexure-Based Anthropomorphic Hand with Enhanced Payload. Soft Robot. 2021. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Behi, F. Kinematic analysis for a six-degree-of-freedom 3-PRPS parallel mechanism. IEEE J. Robot. Autom. 1988, 4, 561–565. [Google Scholar] [CrossRef]
- Liu, X.-J.; Wang, J.; Pritschow, G. Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 2006, 41, 145–169. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, A.; Zhou, J.; Cui, S.-G.; Zhao, L. Statics analysis and examination research of 3-RSS/S parallel mechanism. J. Mach. Des. 2013, 30, 26–31. [Google Scholar]
- Gosselin, C. Determination of the Workspace of 6-DOF Parallel Manipulators. In Proceedings of the ASME 1989 Design Technical Conferences, 15th Design Automation Conference: Volume 3-Mechanical Systems Analysis, Design and Simulation Montreal, Quebec, QC, Canada, 17–21 September 1989; pp. 321–326. [Google Scholar]
- Geng, Z.; Haynes, L. Neural network solution for the forward kinematics problem of a Stewart platform. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9 April 1991; pp. 2650–2655. [Google Scholar]
- Morell, A.; Tarokh, M.; Acosta, L. Solving the forward kinematics problem in parallel robots using Support Vector Regression. Eng. Appl. Artif. Intell. 2013, 26, 1698–1706. [Google Scholar] [CrossRef]
- Innocenti, C. Forward kinematics in polynomial form of the general Stewart platform. J. Mech. Des. 2001, 123, 254–260. [Google Scholar] [CrossRef]
- Jiang, Q. Singularity-Free Workspace Analysis and Geometric Optimization of Parallel Mechanisms. Ph.D. Thesis, University Laval, Québec, QC, Canada, 2008. [Google Scholar]
- Lee, D.-H.; Na, M.-W.; Song, J.-B.; Park, C.-H.; Park, D.-I. Assembly process monitoring algorithm using force data and deformation data. Robot. Comput. Integr. Manuf. 2019, 56, 149–156. [Google Scholar] [CrossRef]
- Nayak, S. Development of a 6 DOF Compliant Parallel Mechanism to Sense and Control the Force-Torque and Displacement of a Serial Robot Manipulator. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- Filho, S.C.T.; Cabral, E.L.L. Kinematics and workspace analysis of a parallel architecture robot: The Hexa. In Proceedings of the 18th International Congress of Mechanical Engineering, Ouro Preto, Brazil, 6–11 November 2005. [Google Scholar]
- Gallagher, N. Design and Development of a Stewart Platform and Its Subsequent Adaptation for Use in CNC Applications. Bachelor’s Thesis, Lakehead University, Thunder Bay, ON, Canada, 2019. [Google Scholar]
Trial | Inverse Kinematics | |||||
---|---|---|---|---|---|---|
x | y | z | ψ | θ | φ | |
1 | 5.30 | 2.40 | −26.10 | 183.40 | 4.30 | 2.70 |
2 | −3.72 | 4.57 | −24.69 | 185.60 | 6.40 | 3.50 |
3 | 1.57 | 6.42 | −22.00 | 175.00 | −3.52 | 4.75 |
4 | 4.26 | 3.56 | −25.00 | 178.30 | 3.31 | 4.20 |
5 | −3.50 | −3.50 | −24.00 | 177.00 | 3.00 | 4.00 |
Trial | Forward Kinematics | |||||
x | y | z | ψ | θ | φ | |
1 | 5.30 | 2.40 | −26.10 | 183.40 | 4.30 | 2.70 |
2 | −3.72 | 4.57 | −24.69 | 185.60 | 6.40 | 3.50 |
3 | 1.57 | 6.42 | −22.00 | 175.00 | −3.52 | 4.75 |
4 | 4.26 | 3.56 | −25.00 | 178.30 | 3.31 | 4.20 |
5 | −3.50 | −3.50 | −24.00 | 177.00 | 3.00 | 4.00 |
Trial | Initial value of Numerical Solution | |||||
---|---|---|---|---|---|---|
x | y | z | ψ | θ | φ | |
1 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
2 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 1.00 |
3 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 3.00 |
4 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 7.00 |
5 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 10.00 |
Trial | Prototype Model | |||||
x | y | z | ψ | θ | φ | |
1 | 0.00 | 0.00 | −25.0000 | 180.00 | 0.00 | 0.0000 |
2 | 0.00 | 0.00 | −24.9957 | 180.00 | 0.00 | 0.8168 |
3 | 0.00 | 0.00 | −24.9862 | 180.00 | 0.00 | 1.4556 |
4 | 0.00 | 0.00 | −24.9762 | 180.00 | 0.00 | 1.9120 |
5 | 0.00 | 0.00 | −24.9716 | 180.00 | 0.00 | 2.0898 |
Trial | Modified Model | |||||
x | y | z | ψ | θ | φ | |
1 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
2 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
3 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
4 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
5 | 0.00 | 0.00 | −25.00 | 180.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Choi, S.; Yun, D. Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism. Sensors 2021, 21, 3832. https://doi.org/10.3390/s21113832
Kim D, Choi S, Yun D. Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism. Sensors. 2021; 21(11):3832. https://doi.org/10.3390/s21113832
Chicago/Turabian StyleKim, Donghyun, Sunghyun Choi, and Dongwon Yun. 2021. "Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism" Sensors 21, no. 11: 3832. https://doi.org/10.3390/s21113832
APA StyleKim, D., Choi, S., & Yun, D. (2021). Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism. Sensors, 21(11), 3832. https://doi.org/10.3390/s21113832