Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization
Abstract
:1. Introduction
2. Analytical Model of Doubly Clamped Flexible PEH
Analytical Model Based on Euler–Bernoulli Beam Theory
3. Numerical Simulation
3.1. Frequency Response
3.2. Resistance Load Matching
3.3. Effects of Piezoelectric Layer Thickness on the Output Performanc of Energy Harvester
4. Experimental Demonstration
4.1. Test. Setup for the Doubly Clamped Energy Harvester
4.2. Experimental Results
4.2.1. Frequency Response
4.2.2. Resistance Load Matching
4.3. Comparison of Recent Doubly Clamped Energy Harvesters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zurbuchen, A.; Pfenniger, A.; Stahel, A.; Stoeck, C.T.; Vandenberghe, S.; Koch, V.M.; Vogel, R. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 2013, 41, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Shin, H.J.; Lee, H.; Jeong, C.K.; Park, H.; Hwang, G.T.; Lee, H.Y.; Joe, D.J.; Han, J.H.; Lee, S.H.; et al. In vivo self--powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 2017, 27, 1700341. [Google Scholar] [CrossRef]
- Liu, R.; Kuang, X.; Deng, J.; Wang, Y.C.; Wang, A.C.; Ding, W.; Lai, Y.C.; Chen, J.; Wang, P.; Lin, Z.; et al. Shape memory polymers for body motion energy harvesting and self--powered mechanosensing. Adv. Mater. 2018, 30, 1705195. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhong, J.; Lee, C.; Lee, S.W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
- Wen, X.; Yang, W.; Jing, Q.; Wang, Z.L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405–7412. [Google Scholar] [CrossRef]
- Qi, Y.; Kim, J.; Nguyen, T.D.; Lisko, B.; Purohit, P.K.; McAlpine, M.C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Deng, J.; Niu, S.; Peng, W.; Wu, C.; Liu, R.; Wen, Z.; Wang, Z.L. Electric eel--skin--inspired mechanically durable and super--stretchable nanogenerator for deformable power source and fully autonomous conformable electronic--skin applications. Adv. Mater. 2016, 28, 10024–10032. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Song, H.C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J.; et al. A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvest. Syst. 2019, 4, 3–39. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Freni, F.; Montanini, R. Power Conversion Efficiency of Cantilever-Type Vibration Energy Harvesters Based on Piezoceramic Films. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Montanini, R.; Quattrocchi, A. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1740, p. 060003. [Google Scholar]
- Cottone, F.; Gammaitoni, L.; Vocca, H.; Ferrari, M.; Ferrari, V. Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 2012, 21, 035021. [Google Scholar] [CrossRef]
- Liang, Z.; Xu, C.; Ren, B.; Luo, H.; Wang, D. A low frequency and broadband piezoelectric energy harvester using asymmetrically serials connected double clamped–clamped beams. Jpn. J. Appl. Phys. 2014, 53, 087101. [Google Scholar] [CrossRef]
- Liang, Z.; Xu, C.; Ren, B.; Luo, H. Theoretical analysis of energy harvesting performance for clamped–clamped piezoelectric beam. Microsyst. Technol. 2015, 21, 815–823. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, W.; Du, W.; Zhu, P.; Liu, Q. Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mech. Syst. Signal Process 2019, 115, 162–172. [Google Scholar] [CrossRef]
- Emad, A.; Mahmoud, M.A.; Ghoneima, M.; Dessouky, M. Modeling and analysis of stretching strain in clamped-clamped beams for energy harvesting. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Kashyap, R.; Lenka, T.R.; Baishya, S. Study of doubly clamped piezoelectric beam energy harvesters with non-traditional geometries. In Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE), Patiala, India, 17–19 November 2016; pp. 1–4. [Google Scholar]
- Cui, Y.; Yu, M.; Gao, S.; Kong, X.; Gu, W.; Zhang, R.; Liu, B. Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams. AIP Adv. 2018, 8, 055028. [Google Scholar] [CrossRef]
- Xu, R.; Akay, H.; Kim, S.G. Buckled MEMS Beams for Energy Harvesting from Low Frequency Vibrations. Research 2019, 2019, 1087946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, W.J.; Wang, Z.S. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction. Sensors 2021, 21, 2299. [Google Scholar] [CrossRef]
- Qin, Y.; Wei, T.; Zhao, Y.; Chen, H. Simulation and experiment on bridge-shaped nonlinear piezoelectric vibration energy harvester. Smart Mater. Struct. 2019, 28, 045015. [Google Scholar] [CrossRef]
- Yenuganti, S.; Peparthi, M. Improved energy harvesting from a clamped–clamped micro beam with cavity. Microsyst. Technol. 2020, 4, 1–11. [Google Scholar]
- Li, M.; Gao, R.; Liu, S.; Tong, L. Analysis and test of a novel pre-compressed cruciform energy harvester. Sensors Actuators A Phys. 2020, 302, 111807. [Google Scholar] [CrossRef]
- Alcheikh, N.; Ouakad, H.M.; Younis, M.I. Dynamic analysis of straight stepped microbeams. Int. J. Non-Linear Mech. 2020, 128, 103639. [Google Scholar] [CrossRef]
Material and Geometric Parameters | Value/Unit |
---|---|
Geometry of the PVC substructure, L × b × hs | 45 mm × 20 mm × 0.023 mm |
Geometry of the the PVDF, L × b × hp | 45 mm × 20 mm × 0.018 mm |
Young’s modulus of the substructure, Ys | 2.9 GPa |
Young’s modulus of the PVDF, Yp | 3.9 GPa |
Mass density of the substructure, ρs | 1380 kg/m3 |
Mass density of the PVDF, ρp | 1780 kg/m3 |
Piezoelectric constant, d31 | 23 pm/V |
Relative permittivity, ε/ε0 | 12 |
Ref | Resonant Frequency (Hz) | Load Resistance (kΩ) | Mass | Output Voltage/Power | Overall Size (mm3) | Power Density (μW/mm3) | Time |
---|---|---|---|---|---|---|---|
[18] | 580 | 60 | ✓ | 0.094 V/0.73 μW | 2115.75 | 3.45 × 10−4 | 2018 |
[19] | 70 | 1 × 103 | ✓ | −/0.08 μW | - | - | 2019 |
[21] | 37 | 300 | ✓ | 0.028 V/1.9 μW | 708.5 | 2.68 × 10−3 | 2019 |
[23] | 120 | ∞ | ✓ | 30 V/− | 320.5 | - | 2020 |
[24] | 20 k~140 k | ∞ | 4.4 V~0.5 V/− | 5 × 10−6 | - | 2020 | |
This work | 27 | 5.7 × 103 | 4.05 V/1.38 μW | 36.9 | 3.73 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Fan, Q.; Li, L.; Chen, D.; Xu, L.; Dai, Q.; Liu, Q. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization. Sensors 2021, 21, 3861. https://doi.org/10.3390/s21113861
Mei J, Fan Q, Li L, Chen D, Xu L, Dai Q, Liu Q. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization. Sensors. 2021; 21(11):3861. https://doi.org/10.3390/s21113861
Chicago/Turabian StyleMei, Jie, Qiong Fan, Lijie Li, Dingfang Chen, Lin Xu, Qingyang Dai, and Qi Liu. 2021. "Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization" Sensors 21, no. 11: 3861. https://doi.org/10.3390/s21113861
APA StyleMei, J., Fan, Q., Li, L., Chen, D., Xu, L., Dai, Q., & Liu, Q. (2021). Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization. Sensors, 21(11), 3861. https://doi.org/10.3390/s21113861