Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review
Abstract
:1. Introduction
1.1. History of IVUS Transducers
1.2. Atherosclerosis
2. Diagnostic Indicators for Atherosclerosis
2.1. Plaque Burden
2.2. Arterial Remodeling Index
2.3. Thickness of Thin Fibrous Cap
2.4. Thickness of Necrotic Core
2.5. Vasa Vasorum Density
2.6. Stress on Vessel Wall and Plaque
3. Stent Implantation with IVUS Image
4. IVUS Transducers
4.1. Classification of IVUS Transducer
4.2. Typical Structure of Mechanical IVUS Transducers
4.3. Common Issues in Developing Mechanical IVUS Transducers
4.4. Single-Frequency IVUS Transducers
4.5. Multifrequency IVUS Transducer
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edler, I.; Hertz, C.H. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin. Physiol. Funct. Imaging 2004, 113, 180–190. [Google Scholar] [CrossRef]
- Ciezynski, T. Intracardiac method for investigation of structure of the heart with the aid of ultrasonics. Arch. Immunol Ter Dow 1960, 8, 551–559. [Google Scholar]
- Kossoff, G. Diagnostic applications of ultrasound in cardiology. Australas. Radiol. 1966, 10, 101–106. [Google Scholar] [CrossRef]
- Carleton, R.A.; Sessions, R.W.; Graettinger, J.S. Diameter of heart measured by intracavitary ultrasound. Med. Res. Eng. 1969, 8, 28–32. [Google Scholar] [PubMed]
- Peronneau, P. Catheter with Piezoelectric Transducer. U.S. Patent 3542014A, 24 November 1970. [Google Scholar]
- Stegall, H.F.; Pratt, J.R.; Moser, P.J. Carotid Mechanics in Situ. Fed. Proc. 1969, 28, 585. [Google Scholar]
- Kardon, M.B.; O’Rourke, R.A.; Bishop, V.S. Measurement of left ventricular internal diameter by catheterization. J. Appl. Physiol. 1971, 31, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Stegall, H.F. A catheter-tip pressure and velocity sensor. In Proceedings of the 20th ACEMB, Boston, MA, USA, 13–16 November 1967; p. 4. [Google Scholar]
- Reid, J.M.; Davis, D.L.; Ricketts, H.J.; Spencer, M.P. A new doppler flowmeter system and its operation with catheter mounted transducers. In Cardiovascular Applications of Ultrasound; American Elsevier: New York, NY, USA, 1974; pp. 183–192. [Google Scholar]
- Gichard, F.D.; Auth, D.C. Development of a mechanically scanned doppler blood flow catheter. In Proceedings of the 1975 IEEE Ultrasonic Symposium, Los Angeles, CA, USA, 22–24 September 1975; pp. 18–21. [Google Scholar]
- Sibley, D.H.; Millar, H.D.; Hartley, C.J.; Whitlow, P.L. Subselective measurement of coronary blood flow velocity using a steerable doppler catheter. J. Am. Coll. Cardiol. 1986, 8, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Wild, J.J.; Reid, J.M. Ultrasonic rectal endoscope for tumor location. Am. Inst. Ultrason. Med. 1955, 4, 59. [Google Scholar]
- Omoto, R. Ultrasound intravenous sonde (The 1st report). JJME 1963, 1, 90. [Google Scholar]
- Kimoto, S.; Omoto, R.; Tsunemoto, M.; Muroi, T.; Atsumi, K.; Uchidat, R. Ultrasonic tomography of the liver and detection of heart arterial septal defect with the aid of ultrasonic intravenous probes. Ultrasonics 1964, 2, 82–86. [Google Scholar] [CrossRef]
- Omoto, R. Intracardiac scanning of the heart with the aid of ultrasonic intravenous probe. Jpn. Heart J. 1967, 8, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.N.T. Developments in medical ultrasonics. World Med. Electron. 1966, 66, 272–277. [Google Scholar]
- Bom, N.; Lancée, C.T.; Van Egmond, F.C. An ultrasonic intracardiac scanner. Ultrasonics 1972, 10, 72–76. [Google Scholar] [CrossRef]
- Insull, W., Jr. The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. Am. J. Med. 2009, 122, S3–S14. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Safouris, A.; Kim, D.; Alexandrov, A.V. Recent advances in primary and secondary prevention of atherosclerotic stroke. J. Stroke 2018, 20, 145–166. [Google Scholar] [CrossRef] [PubMed]
- McKenney-Drake, M.L.; Moghbel, M.C.; Paydary, K.; Alloosh, M.; Houshmand, S.; Moe, S.; Salavati, A.; Sturek, J.M.; Territo, P.R.; Weaver, C.; et al. 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2190–2200. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Bonomini, F.; Tengattini, S.; Fabiano, A.; Bianchi, R.; Rezzani, R. Atherosclerosis and oxidative stress. Histol. Histopathol. 2008, 23, 381–390. [Google Scholar]
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.M. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ. J. 2010, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, L.S.; Fotiadis, D.I.; Michalis, L.K. Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Andreou, I.; Stone, P.H. In-stent atherosclerosis at a crossroads: Neoatherosclerosis…or paleoatherosclerosis? Circulation 2016, 134, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Hürlimann, D.; Ruschitzka, F.; Luscher, T.F. The relationship between the endothelium and the vessel wall. Eur. Heart J. Suppl. 2002, 4, A1–A7. [Google Scholar] [CrossRef]
- Galley, H.F.; Webster, N.R. Physiology of the endothelium. Br. J. Anaesth. 2004, 93, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Sandoo, A.; Veldhuijzen van Zanten, J.J.C.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Brophy, M.L.; Dong, Y.; Wu, H.; Rahman, H.N.A.; Song, K.; Chen, H. Eating the dead to keep atherosclerosis at bay. Front. Cardiovasc. Med. 2017, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid. Med. Cell. Longev. 2019, 2019, 1–32. [Google Scholar] [CrossRef]
- Nakahara, T.; Dweck, M.R.; Narula, N.; Pisapia, D.; Narula, J.; Strauss, H.W. Coronary artery calcification: From mechanism to molecular imaging. JACC Cardiovasc. Imaging 2017, 10, 582–593. [Google Scholar] [CrossRef]
- Lamon, B.D.; Hajjar, D.P. Inflammation at the molecular interface of atherogenesis: An anthropological journey. Am. J. Pathol. 2008, 173, 1253–1264. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Gargiulo, S.; Gramanzini, M.; Mancini, M. Molecular imaging of vulnerable atherosclerotic plaques in animal models. Int. J. Mol. Sci. 2016, 17, 1511. [Google Scholar] [CrossRef] [Green Version]
- Mehran, R.; Dangas, G.; Mintz, G.S.; Lansky, A.J.; Pichard, A.D.; Satler, L.F.; Kent, K.M.; Stone, G.W.; Leon, M.B. Atherosclerotic plaque burden and ck-mb enzyme elevation after coronary interventions: Intravascular ultrasound study of 2256 patients. Circulation 2000, 101, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Kobayashi, Y.; Mintz, G.S.; Takebayashi, H.; Dangas, G.; Moussa, I.; Mehran, R.; Lansky, A.J.; Kreps, E.; Collins, M.; et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: A comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 2003, 108, 2473–2478. [Google Scholar] [CrossRef] [Green Version]
- Oviedo, C.; Maehara, A.; Mintz, G.S.; Araki, H.; Choi, S.Y.; Tsujita, K.; Kubo, T.; Doi, H.; Templin, B.; Lansky, A.J.; et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations where is the plaque really located? Circ. Cardiovasc. Interv. 2010, 3, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Tinana, A.; Mintz, G.S.; Weissman, N.J. Volumetric intravascular ultrasound quantification of the amount of atherosclerosis and calcium in nonstenotic arterial segments. Am. J. Cardiol. 2002, 89, 757–760. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Hsu, A.; Wolski, K.; Hu, B.; Bayturan, O.; Lavoie, A.; Uno, K.; Tuzcu, E.M.; Nissen, S.E. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 2010, 55, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef]
- Calvert, P.A.; Obaid, D.R.; O’Sullivan, M.; Shapiro, L.M.; McNab, D.; Densem, C.G.; Schofield, P.M.; Braganza, D.; Clarke, S.C.; Ray, K.K.; et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: The VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc. Imaging 2011, 4, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Maehara, A.; Cristea, E.; Mintz, G.S.; Lansky, A.J.; Dressler, O.; Biro, S.; Templin, B.; Virmani, R.; De Bruyne, B.; Serruys, P.W.; et al. Definitions and methodology for the grayscale and radiofrequency intravascular ultrasound and coronary angiographic analyses. JACC Cardiovasc. Imaging 2012, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Puri, R.; Wolski, K.; Uno, K.; Kataoka, Y.; King, K.L.; Crowe, T.D.; Kapadia, S.R.; Tuzcu, E.M.; Nissen, S.E.; Nicholls, S.J. Left main coronary atherosclerosis progression, constrictive remodeling, and clinical events. JACC Cardiovasc. Interv. 2013, 6, 29–35. [Google Scholar] [CrossRef]
- Shan, P.; Mintz, G.S.; McPherson, J.A.; De Bruyne, B.; Farhat, N.Z.; Marso, S.P.; Serruys, P.W.; Stone, G.W.; Maehara, A. Usefulness of coronary atheroma burden to predict cardiovascular events in patients presenting with acute coronary syndromes (from the PROSPECT study). Am. J. Cardiol. 2015, 116, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.R.; Pasterkamp, G.; Yeung, A.C.; Borst, C. Arterial remodeling: Mechanisms and clinical implications. Circulation 2000, 102, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Van Varik, B.J.; Rennenberg, R.J.M.W.; Reutelingsperger, C.P.; Kroon, A.A.; De Leeuw, P.W.; Schurgers, L.J. Mechanisms of arterial remodeling: Lessons from genetic diseases. Front. Genet. 2012, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasterkamp, G.; Borst, C.; Gussenhoven, E.J.; Mali, W.P.T.M.; Post, M.J.; The, S.H.K.; Reekers, J.A.; van den Berg, F.G. Remodeling of de novo atherosclerotic lesions in femoral arteries: Impact on mechanism of balloon angioplasty. J. Am. Coll. Cardiol. 1995, 26, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.C.; Bos, L.; Quarles Van Ufford, M.A.; Eefting, F.D.; Pasterkamp, G.; Borst, C. Shrinkage of human coronary arteries is an important determinant of de novo atherosclerotic luminal stenosis: An in vivo intravascular ultrasound study. Heart 1998, 79, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Schoenhagen, P.; Ziada, K.M.; Vince, D.G.; Nissen, S.E.; Tuzcu, E.M. Arterial remodeling and coronary artery disease: The concept of “dilated” versus “obstructive” coronary atherosclerosis. J. Am. Coll. Cardiol. 2001, 38, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Schoenhagen, P.; Ziada, K.M.; Kapadia, S.R.; Crowe, T.D.; Nissen, S.E.; Tuzcu, E.M. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: An intravascular ultrasound study. Circulation 2000, 101, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Von Birgelen, C.; Klinkhart, W.; Mintz, G.S.; Papatheodorou, A.; Herrmann, J.; Baumgart, D.; Haude, M.; Wieneke, H.; Ge, J.; Erbel, R. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: An intravascular ultrasound study in vivo. J. Am. Coll. Cardiol. 2001, 37, 1864–1870. [Google Scholar] [CrossRef] [Green Version]
- Pasterkamp, G.; Schoneveld, A.H.; Van Der Wal, A.C.; Haudenschild, C.C.; Clarijs, R.J.G.; Becker, A.E.; Hillen, B.; Borst, C. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J. Am. Coll. Cardiol. 1998, 32, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Nishikawa, H.; Mukai, S.; Setsuda, M.; Nakajima, K.; Tamada, H.; Suzuki, H.; Ohnishi, T.; Kakuta, Y.; Nakano, T.; et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: An intravascular ultrasound study. J. Am. Coll. Cardiol. 2001, 37, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Kotani, J.; Mintz, G.S.; Castagna, M.T.; Pinnow, E.; Berzingi, C.O.; Bui, A.B.; Pichard, A.D.; Satler, L.F.; Suddath, W.O.; Waksman, R.; et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 2003, 107, 2889–2893. [Google Scholar] [CrossRef] [Green Version]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef] [Green Version]
- Burke, A.P.; Farb, A.; Malcom, G.T.; Liang, Y.; Smialek, J.; Virmani, R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Eng. J. Med. 1997, 336, 1276–1282. [Google Scholar] [CrossRef]
- Tearney, G.J.; Jang, I.-K.; Bouma, B.E. Optical coherence tomography for imaging the vulnerable plaque. J. Biomed. Opt. 2006, 11, 021002. [Google Scholar] [CrossRef] [PubMed]
- Motz, J.T.; Fitzmaurice, M.; Miller, A.; Gandhi, S.J.; Haka, A.S.; Galindo, L.H.; Dasari, R.R.; Kramer, J.R.; Feld, M.S. In vivo raman spectral pathology of human atherosclerosis and vulnerable plaque. J. Biomed. Opt. 2006, 11, 021003. [Google Scholar] [CrossRef]
- Vengrenyuk, Y.; Cardoso, L.; Weinbaum, S. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: Cellular microcalcifications in fibrous caps. Mol. Cell. Biomech. 2008, 5, 37–47. [Google Scholar]
- Gao, T.; Zhang, Z.; Yu, W.; Zhang, Z.; Wang, Y. Atherosclerotic carotid vulnerable plaque and subsequent stroke: A high-resolution MRI study. Cerebrovasc. Dis. 2009, 27, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Šćepanović, O.R.; Fitzmaurice, M.; Miller, A.; Kong, C.-R.; Volynskaya, Z.; Dasari, R.R.; Kramer, J.R.; Feld, M.S. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque. J. Biomed. Opt. 2011, 16, 011009. [Google Scholar] [CrossRef]
- Suh, W.M.; Seto, A.H.; Margey, R.J.P.; Cruz-Gonzalez, I.; Jang, I.K. Intravascular detection of the vulnerable plaque. Circ. Cardiovasc. Imaging 2011, 4, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Stefanadis, C.; Antoniou, C.K.; Tsiachris, D.; Pietri, P. Coronary atherosclerotic vulnerable plaque: Current perspectives. J. Am. Heart Assoc. 2017, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.; Kang, S.J.; Kim, G.; Lee, J.G.; Min, H.S.; Cho, H.; Kang, D.Y.; Lee, P.H.; Ahn, J.M.; Park, D.W.; et al. Prediction of coronary thin-cap fibroatheroma by intravascular ultrasound-based machine learning. Atherosclerosis 2019, 288, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, J.; Finet, G.; Gharib, A.M.; Herzka, D.A.; Tracqui, P.; Heroux, J.; Rioufol, G.; Kotys, M.S.; Elagha, A.; Pettigrew, R.I. Necrotic core thickness and positive arterial remodeling index: Emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H717–H727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.C.; Loree, H.M.; Kamm, R.D.; Fishbein, M.C.; Lee, R.T. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: A structural analysis with histopathological correlation. Circulation 1993, 87, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzapfel, G.A.; Sommer, G.; Gasser, C.T.; Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2048–H2058. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, A.C.; Speelman, L.; van Brummelen, H.; Gutiérrez, M.A.; Virmani, R.; van der Lugt, A.; van der Steen, A.F.W.; Wentzel, J.J.; Gijsen, F.J.H. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed. Eng. Online 2011, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Speelman, L.; Akyildiz, A.C.; den Adel, B.; Wentzel, J.J.; van der Steen, A.F.W.; Virmani, R.; van der Weerd, L.; Jukema, J.W.; Poelmann, R.E.; van Brummelen, E.H.; et al. Initial stress in biomechanical models of atherosclerotic plaques. J. Biomech. 2011, 44, 2376–2382. [Google Scholar] [CrossRef]
- Maldonado, N.; Kelly-Arnold, A.; Vengrenyuk, Y.; Laudier, D.; Fallon, J.T.; Virmani, R.; Cardoso, L.; Weinbaum, S. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: Potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H619–H628. [Google Scholar] [CrossRef] [Green Version]
- Vandiver, R. Effect of residual stress on peak cap stress in arteries. Math. Biosci. Eng. 2014, 11, 1199–1214. [Google Scholar] [CrossRef]
- Vorpahl, M.; Nakano, M.; Virmani, R. Small black holes in optical frequency domain imaging matches intravascular neoangiogenesis formation in histology. Eur. Heart J. 2010, 31, 1889. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.K.; Heistad, D.D. Structure and function of vasa vasorum. Trends Cardiovasc. Med. 1996, 6, 53–57. [Google Scholar] [CrossRef]
- Kwon, H.M.; Sangiorgi, G.; Ritman, E.L.; McKenna, C.; Holmes, D.R.; Schwartz, R.S.; Lerman, A. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J. Clin. Investig. 1998, 101, 1551–1556. [Google Scholar] [CrossRef]
- Galili, O.; Herrmann, J.; Woodrum, J.; Sattler, K.J.; Lerman, L.O.; Lerman, A. Adventitial vasa vasorum heterogeneity among different vascular beds. J. Vasc. Surg. 2004, 40, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Mulligan-Kehoe, M.J.; Simons, M. Vasa vasorum in normal and diseased arteries. Circulation 2014, 129, 2557–2566. [Google Scholar] [CrossRef]
- Paterson, J.C. Vascularization and hemorrhage of the intima of arteriosclerotic arteries. Arch. Pathol. 1936, 22, 312–324. [Google Scholar]
- Pathol, J.P.-A. Capillary rupture with intimal hemorrhage as a causative factor in coronary thrombosis. Arch. Pathol. 1938, 25, 474–487. [Google Scholar]
- Barger, A.C.; Beeuwkes, R., III. Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am. J. Cardiol. 1990, 66, G41–G43. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, L.O.; Rodriguez-Porcel, M.; Holmes, D.R.; Richardson, D.M.; Ritman, E.L.; Lerman, A. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc. Res. 2001, 51, 762–766. [Google Scholar] [CrossRef]
- Moreno, P.R.; Purushothaman, K.R.; Fuster, V.; Echeverri, D.; Truszczynska, H.; Sharma, S.K.; Badimon, J.J.; O’Connor, W.N. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation 2004, 110, 2032–2038. [Google Scholar] [CrossRef] [Green Version]
- Gössl, M.; Versari, D.; Mannheim, D.; Ritman, E.L.; Lerman, L.O.; Lerman, A. Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia-implications for vulnerable plaque-development. Atherosclerosis 2007, 192, 246–252. [Google Scholar] [CrossRef]
- Dunmore, B.J.; McCarthy, M.J.; Naylor, A.R.; Brindle, N.P.J. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J. Vasc. Surg. 2007, 45, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Sluimer, J.C.; Kolodgie, F.D.; Bijnens, A.P.J.J.; Maxfield, K.; Pacheco, E.; Kutys, B.; Duimel, H.; Frederik, P.M.; van Hinsbergh, V.W.M.; Virmani, R.; et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junction: Relevance of compromised structural integrity for intraplaque microvascular leakage. J. Am. Coll. Cardiol. 2009, 53, 1517–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedding, D.G.; Boyle, E.C.; Demandt, J.A.F.; Sluimer, J.C.; Dutzmann, J.; Haverich, A.; Bauersachs, J. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 2018, 9, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.P.; Lee, S.W.; Cho, Y.H.; Kim, Y.S.; Seo, B.R.; Kim, H.S.; Kim, T.S. Vasa vasorum densities in human carotid atherosclerosis is associated with plaque development and vulnerability. J. Korean Neurosurg. Soc. 2020, 63, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarins, C.K.; Giddens, D.P.; Bharadvaj, B.K.; Sottiurai, V.S.; Mabon, R.F.; Glagov, S. Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 1983, 53, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1985, 5, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282, 2035–2042. [Google Scholar] [CrossRef]
- Chatzizisis, Y.S.; Jonas, M.; Coskun, A.U.; Beigel, R.; Stone, B.V.; Maynard, C.; Gerrity, R.G.; Daley, W.; Rogers, C.; Edelman, E.R.; et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress-an intravascular ultrasound and histopathology natural history study. Circulation 2008, 117, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- White, S.J.; Hayes, E.M.; Lehoux, S.; Jeremy, J.Y.; Horrevoets, A.J.G.; Newby, A.C. Characterization of the Differential response of endothelial cells exposed to normal and elevated laminar shear stress. J. Cell. Physiol. 2011, 226, 2841–2848. [Google Scholar] [CrossRef] [Green Version]
- Buradi, A.; Mahalingam, A. Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory. J. Appl. Fluid Mech. 2018, 11, 1497–1509. [Google Scholar] [CrossRef]
- Akyildiz, A.C.; Speelman, L.; Nieuwstadt, H.A.; van Brummelen, H.; Virmani, R.; van der Lugt, A.; van der Steen, A.F.W.; Wentzel, J.J.; Gijsen, F.J.H. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 771–779. [Google Scholar] [CrossRef]
- Finet, G.; Ohayon, J.; Rioufol, G. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: Impact on stability or instability. Coron. Artery Dis. 2004, 15, 13–20. [Google Scholar] [CrossRef]
- Vengrenyuk, Y.; Carlier, S.; Xanthos, S.; Cardoso, L.; Ganatos, P.; Virmnani, R.; Einav, S.; Gilchrist, L.; Weinbaum, S. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl. Acad. Sci. USA 2006, 103, 14678–14683. [Google Scholar] [CrossRef] [Green Version]
- Hachinohe, D.; Mitomo, S.; Candilio, L.; Latib, A.A. Practical approach to assessing stent results with IVUS or OCT. Methodist Debakey Cardiovasc. J. 2018, 14, 32–41. [Google Scholar]
- Okazaki, T.; Sakamoto, S.; Shinagawa, K.; Ichinose, N.; Ishii, D.; Matsushige, T.; Kiura, Y.; Kurisu, K. Detection of in-stent protrusion (ISP) by intravascular ultrasound during carotid stenting: Usefulness of stent-in-stent placement for ISP. Eur. Radiol. 2019, 29, 77–84. [Google Scholar] [CrossRef]
- Lee, J.; Chang, J.H. Dual-element intravascular ultrasound transducer for tissue harmonic imaging and frequency compounding: Development and imaging performance assessment. IEEE Trans. Biomed. Eng. 2019, 66, 3146–3155. [Google Scholar] [CrossRef]
- Choi, T.; Yu, H.; Chang, S.; Ha, D.H.; Cho, D.W.; Jang, J.; Lee, C.; Lu, G.; Chang, J.H.; Zhou, Q.; et al. Visibility of bioresorbable vascular scaffold in intravascular ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1090–1101. [Google Scholar] [CrossRef]
- Fort, S.; Freeman, N.A.; Johnston, P.; Cohen, E.A.; Stuart Foster, F. In vitro and in vivo comparison of three different intravascular ultrasound catheter designs. Catheter. Cardiovasc. Interv. 2001, 52, 382–392. [Google Scholar] [CrossRef]
- Katouzian, A.; Angelini, E.D.; Carlier, S.G.; Suri, J.S.; Navab, N.; Laine, A.F. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 823–834. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Williams, J.; Kang, B.J.; Yoon, C.; Cabrera-Munoz, N.; Jeong, J.S.; Lee, S.G.; Shung, K.K.; Kim, H.H. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. Sens. Actuators A Phys. 2015, 228, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, Z.; Chan, J.; Yeow, J.T.W. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging. Microsyst. Nanoeng. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Sanidas, E.; Carlier, S. Clinical utility of intravascular ultrasound. Intravasc. Ultrasound 2020, 3–24. [Google Scholar]
- Li, X.; Li, J.; Jing, J.; Ma, T.; Liang, S.; Zhang, J.; Mohar, D.; Raney, A.; Mahon, S.; Brenner, M.; et al. Integrated IVUS-OCT imaging for atherosclerotic plaque characterization. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 196–203. [Google Scholar]
- Lin, C.P.; Honye, J.; Chang, C.J.; Kuo, C.T. Clinical application of intravascular ultrasound in coronary artery disease: An update. Acta Cardiol. Sin. 2011, 27, 1–13. [Google Scholar]
- Xu, J.; Lo, S. Fundamentals and role of intravascular ultrasound in percutaneous coronary intervention. Cardiovasc. Diagn. Ther. 2020, 10, 1358–1370. [Google Scholar] [CrossRef]
- Corl, P.D.; Miller, D. Rotary Transformer and Associated Devices, Systems, and Methods for Rotational Intravascular Ultrasound. U.S. Patent 9257226B2, 9 February 2016. [Google Scholar]
- Van Schaijk, R.; Devices, M. CMUT: A Versatile and Low Cost Ultrasonic Platform. Available online: http://position-2.eu/wp-content/uploads/MUT2019.pdf (accessed on 27 May 2021).
- Vasquez, A.; Mistry, N.; Singh, J. Impact of intravascular ultrasound in clinical practice impact of intravascular ultrasound in clinical practice. Interv. Cardiol. Rev. 2014, 9, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Shung, K.K.; Zippuro, M. Ultrasonic transducers and arrays. In Diagnostic Ultrasound: Imaging and Blood Flow Measurements, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 39–78. [Google Scholar]
- Cobbold, R. Foundations of Biomedical Ultrasound; Oxford University Press: New York, NY, USA, 2006; pp. 173, 386–388. [Google Scholar]
- Zhou, Q.; Xu, X.; Gottlieb, E.J.; Sun, L.; Cannata, J.M.; Ameri, H.; Humayun, M.S.; Han, P.; Shung, K.K. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave doppler application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 668–675. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.; Chang, J.H. Oblong-shaped-focused transducers for intravascular ultrasound imaging. IEEE Trans. Biomed. Eng. 2017, 64, 671–680. [Google Scholar] [CrossRef]
- Sung, J.H.; Jeong, J.S. Development of high-frequency (>60 MHz) Intravascular ultrasound (IVUS) transducer by using asymmetric electrodes for improved beam profile. Sensors 2018, 18, 4414. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.W.; Hodgson, J.M.; St Goar, F.G.; Frey, A.; Mudra, H.; Sheehan, H.; Linnemeier, T.J. Improved procedural results of coronary angioplasty with intravascular ultrasound-guided balloon sizing: The CLOUT pilot trial. Circulation 1997, 95, 2044–2052. [Google Scholar] [CrossRef]
- Aoki, J.; Abizaid, A.C.; Serruys, P.W.; Ong, A.T.L.; Boersma, E.; Sousa, J.E.; Bruining, N. Evaluation of four-year coronary artery response after sirolimus-eluting stent implantation using serial quantitative intravascular ultrasound and computer-assisted grayscale value analysis for plaque composition in event-free patients. J. Am. Coll. Cardiol. 2005, 46, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Willard, L.; Sieben, W. Intravascular Device such as Intrducer Sheath or Balloon Catheter or the Like and Methods for Use Thereof. U.S. Patent US5219335A, 15 June 1993. [Google Scholar]
- Lee, W.; Griffin, W.B.; Wildes, D.G. Apparatuses Comprising Catheter Tips, Including Mechanically Scanning Ultrasound Probe Catheter Tip. U.S. Patent 8727993B2, 20 May 2014. [Google Scholar]
- Vanderlaan, D.; Karpiouk, A.B.; Yeager, D.; Emelianov, S. Real-time intravascular ultrasound and photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 141–149. [Google Scholar] [CrossRef]
- Guess, J.F.; Campbell, J.S. Acoustic properties of some biocompatible polymers at body temperature. Ultrasound Med. Biol. 1995, 21, 273–277. [Google Scholar] [CrossRef]
- Bloornfield, P.E.; Lo, W.J.; Lewin, P.A. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1397–1405. [Google Scholar] [CrossRef]
- Corl, P.D. Device and System for Imaging and Blood Flow Velocity Measurement. U.S. Patent 20130303907A1, 14 November 2013. [Google Scholar]
- Crowley, R.J. Acoustic Imaging Catheter and the Like. U.S. Patent 005524630A, 11 June 1996. [Google Scholar]
- Bruining, N.; Hamers, R.; Teo, T.J.; de Feijter, P.J.; Serruys, P.W.; Roelandt, J.R.T.C. Adjustment method for mechanical boston scientific corporation 30 MHz intravascular ultrasound catheters connected to a clearview® console. Mechanical 30 MHz IVUS catheter adjustment. Int. J. Cardiovasc. Imaging 2004, 20, 83–91. [Google Scholar] [CrossRef]
- Zelenka, R.; Okeeffe, D.; Cars, M.; McEvers, B. Low Profile Intravascular Ultrasound Catheter. U.S. Patent 8814799B2, 26 August 2014. [Google Scholar]
- Corl, P.D.; van Hoven, D. Intravascular Ultrasound Catheter for Minimizing Image Distortion. U.S. Patent US20140187964A1, 3 June 2014. [Google Scholar]
- Munding, C.E.; Chérin, E.; Jourard, I.; Weyers, J.J.; Goertz, D.E.; Courtney, B.K.; Foster, F.S. Development of a 3 french dual-frequency intravascular ultrasound catheter. Ultrasound Med. Biol. 2018, 44, 251–266. [Google Scholar] [CrossRef]
- Shung, K.K.; Cannata, J.M.; Zhou, Q.F. Piezoelectric materials for high frequency medical imaging applications: A review. J. Electroceramics 2007, 19, 139–145. [Google Scholar] [CrossRef]
- Foster, F.S.; Ryan, L.K.; Turnbull, D.H. Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20–80 MHz) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 446–453. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Q.; Djuth, F.T.; Shung, K.K. High-frequency (>50 MHz) medical ultrasound linear arrays fabricated from micromachined bulk PZT materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 315–318. [Google Scholar]
- Maresca, D.; Renaud, G.; van Soest, G.; Li, X.; Zhou, Q.; Shung, K.K.; De Jong, N.; Van der Steen, A.F.W. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. Ultrasound Med. Biol. 2013, 39, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Knapik, D.A.; Starkoski, B.; Pavlin, C.J.; Foster, F.S. A realtime 200 MHz ultrasound B-scan imager. In Proceedings of the 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium, Toronto, ON, Canada, 5–8 October 1997. [Google Scholar]
- Snook, K.A.; Zhao, J.Z.; Alves, C.H.F.; Cannata, J.M.; Chen, W.H.; Meyer, R.J.; Ritter, T.A.; Shung, K.K. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 169–176. [Google Scholar] [CrossRef]
- Cannata, J.M.; Ritter, T.A.; Chen, W.H.; Silverman, R.H.; Shung, K.K. Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1548–1557. [Google Scholar] [CrossRef]
- Fei, C.; Chiu, C.T.; Chen, X.; Chen, Z.; Ma, J.; Zhu, B.; Shung, K.K.; Zhou, Q. Ultrahigh frequency (100 MHz–300 MHz) ultrasonic transducers for optical resolution medical imagining. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Member, S.; Wu, W.; Chung, Y.; Shih, W.Y. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2281–2288. [Google Scholar]
- Yan, X.; Lam, K.H.; Li, X.; Chen, R.; Ren, W.; Ren, X.; Zhou, Q.; Shung, K.K. Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1272–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Pang, X.; Zhang, Z.; Su, M.; Hong, J.; Zheng, H.; Qiu, W.; Lam, K.H. Miniature transducer using PNN-PZT-based ceramic for intravascular ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1102–1109. [Google Scholar] [CrossRef]
- Li, X.; Ma, T.; Tian, J.; Han, P.; Zhou, Q.; Shung, K.K. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1171–1178. [Google Scholar] [CrossRef]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Corl, P.D. Rotational Intravascular Ultrasound Probe with an Active Spinning Element. U.S. Patent 8403856B2, 26 March 2013. [Google Scholar]
- Lee, J.; Shin, E.J.; Lee, C.; Chang, J.H. Development of dual-frequency oblong-shaped-focused transducers for intravascular ultrasound tissue harmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1571–1582. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Chang, J.H. Development of 15 MHz 2-2 piezo-composite ultrasound linear array transducers for ophthalmic imaging. Sens. Actuators A Phys. 2014, 217, 39–48. [Google Scholar] [CrossRef]
- Jang, J.; Kim, J.; Lee, H.J.; Chang, J.H. Transrectal ultrasound and photoacoustic imaging probe for diagnosis of prostate cancer. Sensors 2021, 21, 1217. [Google Scholar] [CrossRef] [PubMed]
- Newnham, R.E.; Bowen, L.J.; Klicker, K.A.; Cross, L.E. Composite piezoelectric transducers. Mater. Des. 1980, 2, 93–106. [Google Scholar] [CrossRef]
- Smith, W.A.; Shaulov, A.; Auld, B.A. Tailoring the properties of composite piezoelectric materials for medical ultrasonic transducers. In Proceedings of the IEEE 1985 Ultrasonics Symposium, San Fransisco, CA, USA, 16–18 October 1985; pp. 642–647. [Google Scholar]
- Smith, W.A. Role of piezocomposites in ultrasonic transducers. In Proceedings of the IEEE 1989 Ultrasonics Symposium, Montreal, QC, Canada, 3–6 October 1989; pp. 755–766. [Google Scholar]
- Oakley, C.G.; Huebner, W.; Liang, K. Design considerations for 1–3 composites used in transducers for medical ultrasonic imaging. In Proceedings of the 1990 IEEE 7th International Symposium on Applications of Ferroelectrics, Urbana-Champaign, IL, USA, 6–8 June 1990; pp. 233–236. [Google Scholar]
- Steinhausen, R. A8.4-modeling and characterization of piezoelectric 1–3 fibre composites. In Proceedings of the Sensors + Test Conferences 2011, Nürnberg, Germany, 7–9 June 2011; pp. 199–204. [Google Scholar]
- Yuan, J.R.; Jiang, X.; Cao, P.J.; Sadaka, A.; Bautista, R.; Snook, K.; Rehrig, P.W. 5C-5 High frequency piezo composites microfabricated ultrasound transducers for intravascular imaging. In Proceedings of the IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 2–6 October 2006; pp. 264–268. [Google Scholar]
- Yuan, J.; Rhee, S.; Jiang, X.N. 60 MHz PMN-PT based 1–3 composite transducer IVUS imaging. In Proceedings of the IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 682–685. [Google Scholar]
- Lee, H.J.; Zhang, S. Design of low-loss 1–3 piezoelectric composites for high-power transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1969–1975. [Google Scholar]
- Chabok, H.R.; Cannata, J.M.; Kim, H.H.; Williams, J.A.; Park, J.; Shung, K.K. A high-frequency annular-array transducer using an interdigital bonded 1–3 composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 206–214. [Google Scholar] [CrossRef]
- Jian, X.; Han, Z.; Liu, P.; Xu, J.; Li, Z.; Li, P.; Shao, W.; Cui, Y. A high frequency geometric focusing transducer based on 1–3 piezocomposite for intravascular ultrasound imaging. Biomed. Res. Int. 2017, 2017, 9327270. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, G.R.; Turnbull, D.H.; Foster, S. Fabrication of high frequency spherically shaped ceramic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1994, 41, 231–235. [Google Scholar] [CrossRef]
- Lee, J.; Chang, J.H. A 40-MHz ultrasound transducer with an angled aperture for guiding percutaneous revascularization of chronic total occlusion: A feasibility study. Sensors 2018, 18, 4079. [Google Scholar] [CrossRef] [Green Version]
- Vos, H.J.; Frijlink, M.E.; Droog, E.; Goertz, D.E.; Blacquière, G.; Gsolf, A.; De Jong, N.; Van Der Steen, A.F.W. A 20–40 MHz ultrasound transducer for intravascular harmonic imaging. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; pp. 1966–1969. [Google Scholar]
- Vos, H.J.; Frijlink, M.A.; Droog, E.; Goertz, D.E.; Blacquiere, G.; Gisolf, A.; De Jong, N.; Van Der Steern, A.F.W. Transducer for harmonic intravascular ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2418–2422. [Google Scholar] [CrossRef]
- Frijlink, M.E.; Goertz, D.E.; Vos, H.J.; Tesselaar, E.; Blacquière, G.; Gisolf, A.; Krams, R.; van der Steen, A.F.W. Harmonic intravascular ultrasound imaging with a dual-frequency catheter. Ultrasound Med. Biol. 2006, 32, 1649–1654. [Google Scholar] [CrossRef]
- Ma, J.; Martin, K.H.; Dayton, P.A.; Jiang, X. A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Czernuszewicz, T.J.; Gallippi, C.M.; Wang, Z.; Ma, J.; Jiang, X. Acoustic radiation force (ARF) generation with a novel dual-frequency intravascular transducer. In Proceedings of the IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 2284–2287. [Google Scholar]
- Ma, J.; Martin, K.H.; Li, Y.; Dayton, P.A.; Shung, K.K.; Zhou, Q.; Jiang, X. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys. Med. Biol. 2015, 60, 3441–3457. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Martin, K.H.; Huang, W.; Dayton, P.A.; Jiang, X. Contrast enhanced superharmonic imaging for acoustic angiography using reduced form-factor lateral mode transmitters for intravascular and intracavity applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Li, S.; Jiang, X. Anti-matching design for wave isolation in dual frequency transducer for intravascular super-harmonic imaging. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; pp. 1–6. [Google Scholar]
- Sung, J.H.; Jeong, E.Y.; Jeong, J.S. Intravascular ultrasound transducer by using polarization inversion technique for tissue harmonic imaging: Modeling and experiments. IEEE Trans. Biomed. Eng. 2020, 67, 3380–3391. [Google Scholar] [CrossRef]
- Park, C.Y.; Sung, J.H.; Jeong, J.S. Design and fabrication of ultrasound linear array transducer based on polarization inversion technique. Sens. Actuators A Phys. 2018, 280, 484–494. [Google Scholar] [CrossRef]
- Ma, T.; Yu, M.; Chen, Z.; Fei, C.; Shung, K.K.; Zhou, Q. Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Munding, C.E.; Chérin, E.; Alves, N.; Goertz, D.E.; Courtney, B.K.; Foster, F.S. 30/80 MHz bidirectional dual-frequency IVUS feasibility evaluated in vivo and for stent imaging. Ultrasound Med. Biol. 2020, 46, 2104–2112. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, M.G.; Williams, J.A.; Yoon, C.; Kang, B.J.; Cabrera-Munoz, N.; Shung, K.K.; Kim, H.H. Dual-element needle transducer for intravascular ultrasound imaging. J. Med. Imaging 2015, 2, 027001. [Google Scholar] [CrossRef]
- Shih, C.C.; Chen, P.Y.; Ma, T.; Zhou, Q.; Shung, K.K.; Huang, C.C. Development of an intravascular ultrasound elastography based on a dual-element transducer. R. Soc. Open Sci. 2018, 5, 180138. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Moon, J.Y.; Chang, J.H. A 35 MHz/105 MHz dual-element focused transducer for intravascular ultrasound tissue imaging using the third harmonic. Sensors 2018, 18, 2290. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.Y.; Lee, J.; Chang, J.H. Electrical impedance matching networks based on filter structures for high frequency ultrasound transducers. Sens. Actuators A Phys. 2016, 251, 225–233. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Hong, J.; Huang, Y.; Mu, P.; Yu, Y.; Liu, R.; Liang, S.; Zheng, H.; Qiu, W. Cable-shared dual-frequency catheter for intravascular ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.; Chang, J.H. Endoscopic probe for ultrasound-assisted photodynamic therapy of deep-lying tissue. IEEE Access 2020, 8, 179745–179753. [Google Scholar] [CrossRef]
- Degertekin, F.L.; Guldiken, R.O.; Karaman, M. Annular-ring CMUT arrays for forward-looking IVUS: Transducer characterization and imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 474–482. [Google Scholar] [CrossRef]
- Yeh, D.T.; Oralkan, Ö.; Wygant, I.O.; O’Donnell, M.; Khuri-Yakub, B.T. 3-D ultrasound imaging using forward-looking CMUT ring array for intravascular/intracardiac applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Heidari, A.; Shelton, S.; Guedes, A.; Horsley, D.A. High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound imaging. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, 26–30 January 2014; pp. 745–748. [Google Scholar]
- Gurun, G.; Tekes, C.; Zahorian, J.; Xu, T.; Satir, S.; Karaman, M.; Hasler, J.; Degertekin, F.L. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Tekes, C.; Degertekin, F.L.; Ghovanloo, M. Towards a reduced-wire interface for CMUT-based intravascular ultrasound imaging systems. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 400–410. [Google Scholar] [CrossRef]
- Hah, D. All-polymer ultrasonic transducer design for an intravascular ultrasonography application. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 2444–2455. [Google Scholar] [CrossRef]
- Yin, J.; Li, X.; Jing, J.; Li, J.; Mukai, D.; Mahon, S.; Edris, A.; Hoang, K.; Shung, K.K.; Brenner, M.; et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J. Biomed. Opt. 2011, 16, 060505. [Google Scholar] [CrossRef] [Green Version]
- Li, B.H.; Leung, A.S.O.; Soong, A.; Munding, C.E.; Lee, H.; Thind, A.S.; Munce, N.R.; Wright, G.A.; Rowsell, C.H.; Yang, V.X.D.; et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter. Cardiovasc. Interv. 2013, 81, 494–507. [Google Scholar] [CrossRef]
- Li, J.; Ma, T.; Jing, J.C.; Zhang, J.; Patel, P.M.; Shung, K.K.; Zhou, Q.; Chen, Z. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J. Biomed. Opt. 2013, 18, 100502. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ma, T.; Mohar, D.; Steward, E.; Yu, M.; Piao, Z.; He, Y.; Shung, K.K.; Zhou, Q.; Patel, P.M.; et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Sheth, T.N.; Pinilla-Echeverri, N.; Mehta, S.R.; Courtney, B.K. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter. JACC Cardiovasc. Interv. 2018, 11, 2427–2430. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kawashima, H.; Hara, H.; Gao, C.; Wang, R.; Kogame, N.; Takahashi, K.; Chichareon, P.; Modolo, R.; Tomaniak, M.; et al. Advances in IVUS/OCT and future clinical perspective of novel hybrid catheter system in coronary imaging. Front. Cardiovasc. Med. 2020, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Moreno, P.R.; Lodder, R.A.; Purushothaman, K.R.; Charash, W.E.; O’Connor, W.N.; Muller, J.E. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002, 105, 923–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waxman, S.; Dixon, S.R.; L’Allier, P.; Moses, J.W.; Petersen, J.L.; Cutlip, D.; Tardif, J.C.; Nesto, R.W.; Muller, J.E.; Hendricks, M.J.; et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques. Initial results of the SPECTACL study. JACC Cardiovasc. Imaging 2009, 2, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Madder, R.D.; Steinberg, D.H.; Anderson, R.D. Multimodality direct coronary imaging with combined near-infrared spectroscopy and intravascular ultrasound: Initial US experience. Catheter. Cardiovasc. Interv. 2013, 81, 551–557. [Google Scholar] [CrossRef]
- Kang, S.J.; Mintz, G.S.; Pu, J.; Sum, S.T.; Madden, S.P.; Burke, A.P.; Xu, K.; Goldstein, J.A.; Stone, G.W.; Muller, J.E.; et al. Combined IVUS and NIRS detection of fibroatheromas: Histopathological validation in human coronary arteries. JACC Cardiovasc. Imaging 2015, 8, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Waksman, R.; Di Mario, C.; Torguson, R.; Ali, Z.A.; Singh, V.; Skinner, W.H.; Artis, A.K.; Cate, T.T.; Powers, E.; Kim, C.; et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: A prospective, cohort study. Lancet 2019, 394, 1629–1637. [Google Scholar] [CrossRef]
- Abran, M.; Stähli, B.E.; Merlet, N.; Mihalache-Avram, T.; Mecteau, M.; Rhéaume, E.; Busseuil, D.; Tardif, J.-C.; Lesage, F. Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits. Biomed. Opt. Express 2015, 6, 3989–3999. [Google Scholar] [CrossRef] [Green Version]
- Bozhko, D.; Osborn, E.A.; Rosenthal, A.; Verjans, J.W.; Hara, T.; Kellnberger, S.; Wissmeyer, G.; Ovsepian, S.V.; McCarthy, J.R.; Mauskapf, A.; et al. Quantitative intravascular biological fluorescence-ultrasound imaging of coronary and peripheral arteries in vivo. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1253–1261. [Google Scholar] [CrossRef]
- Bertrand, M.J.; Abran, M.; Maafi, F.; Busseuil, D.; Merlet, N.; Mihalache-Avram, T.; Geoffroy, P.; Tardif, P.L.; Abulrob, A.; Arbabi-Ghahroudi, M.; et al. In vivo near-infrared fluorescence imaging of atherosclerosis using local delivery of novel targeted molecular probes. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, J.W.; Shishkov, M.; Namati, E.; Morse, T.; Shubochkin, R.; McCarthy, J.R.; Ntziachristos, V.; Bouma, B.E.; Jaffer, F.A.; et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 2011, 17, 1680–1684. [Google Scholar] [CrossRef] [Green Version]
- Khraishah, H.; Jaffer, F.A. Intravascular molecular imaging: Near-infrared fluorescence as a new frontier. Front. Cardiovasc. Med. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Gorpas, D.; Fatakdawala, H.; Bec, J.; Ma, D.; Yankelevich, D.R.; Qi, J.; Marcu, L. Fluorescence lifetime imaging and intravascular ultrasound: Co-registration study using ex vivo human coronaries. IEEE Trans. Med. Imaging 2015, 34, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Bec, J.; Phipps, J.E.; Gorpas, D.; Ma, D.; Fatakdawala, H.; Margulies, K.B.; Southard, J.A.; Marcu, L. In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marcu, L.; Bec, J.; Yankelevich, D.R. Single Catheter System that Provides Both Intravascular Ultrasound and Fluorescence Lifetime Imaging. U.S. Patent 2019/0374195A1, 12 December 2019. [Google Scholar]
- Bec, J.; Vela, D.; Phipps, J.E.; Agung, M.; Unger, J.; Margulies, K.B.; Southard, J.A.; Buja, L.M.; Marcu, L. Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime. JACC Cardiovasc. Imaging 2020. [Google Scholar] [CrossRef]
- Chen, X.; Kim, W.; Serafino, M.J.; Tan, Z.; Jo, J.A.; Applegate, B.E. Dual-modality optical coherence tomography and frequency-domain fluorescence lifetime imaging microscope system for intravascular imaging. J. Biomed. Opt. 2020, 25, 1–14. [Google Scholar] [CrossRef]
- Jansen, K.; Van Soest, G.; van der Steen, A.F.W. Intravascular photoacoustic imaging: A new tool for vulnerable plaque identification. Ultrasound Med. Biol. 2014, 40, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Karpiouk, A.; Us, T.X. Catheter for Intravascular Ultrasound and Photoacoustic Imaging. U.S. Patent 8932223B2, 13 January 2015. [Google Scholar]
- Iskander-Rizk, S.; Wu, M.; Springeling, G.; Mastik, F.; Beurskens, R.; van der Steen, A.F.W.; van Soest, G. Catheter design optimization for practical intravascular photoacoustic imaging (IVPA) of vulnerable plaques. Proceedings of International Society for Optics and Photonics, San Francisco, CA, USA, 14 February 2018. [Google Scholar]
- Wang, L.; Lei, P.; Wen, X.; Zhang, P.; Yang, S. Tapered fiber-based intravascular photoacoustic endoscopy for high-resolution and deep-penetration imaging of lipid-rich plaque. Opt. Express 2019, 27, 12832–12840. [Google Scholar] [CrossRef]
- Kulpe, S.; Dierolf, M.; Braig, E.; Günther, B.; Achterhold, K.; Gleich, B.; Herzen, J.; Rummeny, E.; Pfeiffer, F.; Pfeiffer, D. K-edge subtraction imaging for coronary angiography with a compact synchrotron X-ray source. PLoS ONE 2018, 13, e0208446. [Google Scholar] [CrossRef] [Green Version]
Piezoelectric Materials | kt | d33 (pC/N) | εS/ε0 | c (m/s) | ρ (kg/m3) |
---|---|---|---|---|---|
PZT–5H [131] | 0.51 | 593 | 1470 | 4580 | 7500 |
PMN–33%PT single crystal [115] | 0.58 | 1430 | 797 | 4608 | 8000 |
LiNbO3 single crystal [137] | 0.49 | - | 39 | 7340 | 4640 |
PMN–PT free-standing film [139] | 0.55 | - | - | - | 7760 |
BZT–50BCT [140] | 0.41 | 597 | 2817 | 5133 | 5200 |
PNN–PZT-based ceramic [141] | 0.60 | 760 | 3409 | 3880 | 7781 |
PIN–PMN–PT single crystal [143] | 0.59 | 2742 | 659 | 4571 | 8198 |
Categories | Center Frequency | −6-dB Bandwidth | Volume Fraction | kt | Focal Length | Aperture Size | Axial Resolution | Lateral Resolution | |
---|---|---|---|---|---|---|---|---|---|
Using high-performance piezoelectric material | 82 MHz [139] | 65% | - | - | 55 | - | 0.4 × 0.4 mm2 | 35 μm | 176 μm |
30.5 MHz [140] | 53% | 26.7 MRayls | - | 41 | - | 0.8 × 0.8 mm2 | - | - | |
42 MHz [141] | 79% | 30.2 MRayls | - | 60 | - | 0.33 × 0.33 mm2 | 36 μm | 141 μm | |
Using 1-3 composite structure | 41 MHz [142] | 77% | 17.8~21.5 MRayl | 65 ± 5% | 71 ± 4 | - | - | - | - |
60 MHz [154] | 77% | <20 MRayls | ~40% | 70 | - | < 0.6 mm | - | - | |
41 MHz [153] | 86% | 20~22 | 70~80% | 75~78% | - | 0.5 × 0.4 mm2 | 43 μm | 226 μm | |
Using geometrical focusing technique | 47 MHz [104] | 72% | - | - | - | 2.5 mm | 0.57 × 0.57 mm2 | 25 μm | 120 μm |
52 MHz [116] | 41% | 36.7 MRayls | - | - | 3 mm | 0.5 × 1.0 mm2 | - | 180 μm | |
37 MHz [159] | 62% | 36.7 MRayls | - | - | 3 mm | 0.5 × 0.5 mm2 | 58 μm | 211 μm | |
52 MHz [157] | 107% | - | 36% | 50% | 3 mm | 0.6 × 0.6 mm2 | 80 μm | 100 μm |
Categories | Type | Frequency Combination (LF/HF) | Each Element Aperture Size | Total Aperture Size | Focal Length | Application |
---|---|---|---|---|---|---|
Stacked structure | Layered/unfocused [160,161] | 22 MHz/40 MHz | - | 0.75 × 1.0 mm2 | - | Tissue harmonic imaging |
Layered/unfocused [168] | 17 MHz/34 MHz | - | 0.60 × 1.0 mm2 | - | Tissue harmonic imaging | |
Layered /unfocused [163] | 6.5 MHz/30 MHz | 0.60 × 3.00 mm2 /0.60 × 0.50 mm2 | 0.60 × 3.00 mm2 | - | Super harmonic contrast imaging | |
Layered/unfocused [164] | 5 MHz/40 MHz | 0.60 × 3.00 mm2 /0.60 × 0.60 mm2 | 0.60 × 3.00 mm2 | - | ARFI imaging | |
Layered/unfocused [165] | 6.5 MHz/30 MHz, 5.0 MHz/30 MHz, 5.0 (1–3 composite) MHz/30 MHz | 0.60 × 3.00 mm2 /- mm2 | 0.60 × 3.00 mm2 | - | Super harmonic contrast imaging | |
Layered/unfocused [166] | 2.25 MHz/32 MHz | 0.37 × 5.00 mm2 /0.37 × 0.50 mm2 | 0.37 × 5.00 mm2 | - | Super harmonic contrast imaging | |
Back-to-back/unfocused [170] | 35 MHz/90 MHz, 35 MHz/120 MHz, 35 MHz/150 MHz | 0.50 × 0.50 mm2 /0.50 × 0.50 mm2 | 0.50 × 0.50 mm2 | - | Superimposed multi-frequency imaging | |
Back-to-back/unfocused [130,171] | 34 MHz/79 MHz | 0.50 × 0.50 mm2 /0.27 × 0.27 mm2 | 0.50 × 0.50 mm2 | - | Superimposed multi-frequency imaging | |
Enumerated structure | Focused (each) [172] | 48 MHz/152 MHz | 0.57 × 0.57 mm2 /0.57 × 0.57 mm2 | 0.50 × 2.07 mm2 | 2.5 mm | Superimposed multi-frequency imaging |
Unfocused [173] | 8.5 MHz/31 MHz | 2.00 × 3.00 mm2 /1.00 × 1.00 mm2 | 2.00 × 4.50 mm2 | - | ARFI imaging | |
Focused (together) [145] | 35 MHz/70 MHz | 0.50 × 0.50 mm2 /0.50 × 0.50 mm2 | 0.50 × 1.70 mm2 | 3 mm | Tissue harmonic imaging | |
Focused (together) [174] | 35 MHz/105 MHz | 0.50 × 0.50 mm2 /0.50 × 0.50 mm2 | 0.50 × 1.10 mm2 | 2.5 mm | Tissue harmonic imaging | |
Focused (together) [100] | 35 MHz/70 MHz | 0.50 × 0.50 mm2 /0.50 × 0.50 mm2 | 0.50 × 1.10 mm2 | 3 mm | Tissue harmonic imaging & Frequency compounded imaging |
Angiography [209] | IVUS [170] | IV-OCT [189] | IV-NIRS [205] | IV-NIRF [198,199] | IV-FLIm [203,204] | IVPA [205] | |
---|---|---|---|---|---|---|---|
Source | X-ray | Ultrasound | NIR light | NIR light | NIR light (Transmission) + Fluorescence (Reception) | NIR light (Transmitssion) + Fluorescence lifetime (Reception) | NIR light (Transmission) + Ultrasound (Reception) |
Image plane | Projected side view | Cross-sectional view | Cross-sectional view | Cross-sectional view | Cross-sectional view | Cross-sectional view | Cross-sectional view |
Imaging type | Morphological image | Morphological image | Morphological image | Molecular image | Molecular image | Molecular image | Molecular image |
Imaging depth | N/A | <10 mm | <1~2 mm | Unknown | 2~5 mm | 0.2 mm | <5 mm |
Axial resolution | N/A | <200 μm | 10~20 μm | N/A | N/A | N/A | <100 μm |
Lateral resolution | 200 μm | <400 μm | 20~90 μm | 1000 μm | 100 μm | 100 μm | <500 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, J.-H.; Chang, J.-H. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. Sensors 2021, 21, 3907. https://doi.org/10.3390/s21113907
Sung J-H, Chang J-H. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. Sensors. 2021; 21(11):3907. https://doi.org/10.3390/s21113907
Chicago/Turabian StyleSung, Jin-Ho, and Jin-Ho Chang. 2021. "Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review" Sensors 21, no. 11: 3907. https://doi.org/10.3390/s21113907
APA StyleSung, J. -H., & Chang, J. -H. (2021). Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. Sensors, 21(11), 3907. https://doi.org/10.3390/s21113907