Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features
Abstract
:1. Introduction
2. Related Work
3. Proposed Approach
3.1. Similarity Matrix Generation from Deep Learning Features
3.2. Finding Local Fragments from Similarity Matrix
3.3. Rectangle Chaining Algorithm
Algorithm 1 Proposed rectangle chaining algorithm. | |
Input | A set of rectangles |
Output | The optimal chaining path |
1: | for to T |
2: | if of rectangle |
3: | rectangle in , with largest |
4: | |
5: | |
6: | if of rectangle |
7: | rectangle in , with largest |
8: | if |
9: | Insert into |
10: | Remove all with and |
11: | where |
12: | return |
3.4. Global Sequence Alignment Using Anchors
4. Experimental Evaluation
4.1. Experimental Setup
4.2. The Precision–Recall Performance of the Features
4.3. Global Alignment Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLAM | simultaneous localization and mapping |
VAE | variational auto encoder |
CAE | convolutional auto encoder |
VLAD | vector of locally aggregated descriptors |
CNN | convolutional neural network |
RNN | recurrent neural network |
DP | dynamic programming |
SAD | sum of absolute differences |
Appendix A. Derivation of the Gap Penalty
References
- Lowry, S.; Sünderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.; Corke, P.; Milford, M.J. Visual place recognition: A survey. IEEE Trans. Robot. 2016, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Zhang, J.; Wang, X.; Chen, Y.; Zhu, C. Place recognition: An overview of vision perspective. Appl. Sci. 2018, 8, 2257. [Google Scholar] [CrossRef] [Green Version]
- López, E.; García, S.; Barea, R.; Bergasa, L.M.; Molinos, E.J.; Arroyo, R.; Romera, E.; Pardo, S. A multi-sensorial simultaneous localization and mapping (SLAM) system for low-cost micro aerial vehicles in GPS-denied environments. Sensors 2017, 17, 802. [Google Scholar] [CrossRef]
- Marchel, Ł.; Naus, K.; Specht, M. Optimisation of the Position of Navigational Aids for the Purposes of SLAM technology for Accuracy of Vessel Positioning. J. Navig. 2020, 73, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Martínez-Ortega, J.F.; Fernández, J.A.S.; Eckert, M. AEKF-SLAM: A new algorithm for robotic underwater navigation. Sensors 2017, 17, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowry, S.M. Visual Place Recognition for Persistent Robot Navigation in Changing Environments. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2014. [Google Scholar]
- Sünderhauf, N.; Protzel, P. BRIEF-Gist—Closing the loop by simple means. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Brisbane, Australia, 25–30 September 2011; pp. 1234–1241. [Google Scholar] [CrossRef]
- Badino, H.; Huber, D.; Kanade, T. Real-time topometric localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 1635–1642. [Google Scholar] [CrossRef] [Green Version]
- Lowry, S.; Milford, M. Supervised and unsupervised linear learning techniques for visual place recognition in changing environments. IEEE Trans. Robot. 2016, 32, 600–613. [Google Scholar] [CrossRef]
- Sünderhauf, N.; Shirazi, S.; Dayoub, F.; Upcroft, B.; Milford, M. On the performance of ConvNet features for place recognition. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4297–4304. [Google Scholar]
- Chen, Z.; Jacobson, A.; Sünderhauf, N.; Upcroft, B.; Liu, L.; Shen, C.; Reid, I.; Milford, M. Deep learning features at scale for visual place recognition. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3223–3230. [Google Scholar]
- Latif, Y.; Garg, R.; Milford, M.; Reid, I. Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2349–2355. [Google Scholar]
- Mao, J.; Hu, X.; He, X.; Zhang, L.; Wu, L.; Milford, M.J. Learning to Fuse Multiscale Features for Visual Place Recognition. IEEE Access 2019, 7, 5723–5735. [Google Scholar] [CrossRef]
- Kingma, D.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Milford, M.; Wyeth, G. SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 1643–1649. [Google Scholar]
- Milford, M. Vision-based place recognition: How low can you go? Int. J. Robot. Res. 2013, 32, 766–789. [Google Scholar] [CrossRef]
- Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Calonder, M.; Lepetit, V.; Ozuysal, M.; Trzcinski, T.; Strecha, C.; Fua, P. BRIEF: Computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1281–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeli, A.; Filliat, D.; Doncieux, S.; Meyer, J.A. Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 2008, 24, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Cummins, M.; Newman, P. FAB-MAP: Probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 2008, 27, 647–665. [Google Scholar] [CrossRef]
- Cummins, M.; Newman, P. Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 2011, 30, 1100–1123. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Murillo, A.; Košecká, J. Are we there yet? Challenging SeqSLAM on a 3000 km journey across all four seasons. In Proceedings of the Presented at the IEEE International Conference on Computer Vision (ICCV) Workshops, Kyoto, Japan, 27 September–4 October 2009. [Google Scholar]
- Siagian, C.; Itti, L. Biologically inspired mobile robot vision localization. IEEE Trans. Robot. 2009, 25, 861–873. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, H. Visual loop closure detection with a compact image descriptor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, 7–12 October 2012; pp. 1051–1056. [Google Scholar]
- Naseer, T.; Ruhnke, M.; Stachniss, C.; Spinello, L.; Burgard, W. Robust visual SLAM across seasons. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2529–2535. [Google Scholar]
- Sünderhauf, N.; Shirazi, S.; Jacobson, A.; Dayoub, F.; Pepperell, E.; Upcroft, B.; Milford, M. Place recognition with convnet landmarks: Viewpoint-robust, condition-robust, training-free. In Proceedings of the Robotics: Science and Systems XI:. Robotics: Science and Systems Conference, Rome, Italy, 13–17 July 2015; pp. 1–10. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Neubert, P.; Sünderhauf, N.; Protzel, P. Appearance change prediction for long-term navigation across seasons. In Proceedings of the European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; pp. 198–203. [Google Scholar]
- Arandjelović, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Oh, J.H.; Lee, B.H. Dynamic programming approach to visual place recognition in changing environments. Electron. Lett. 2017, 53, 391–393. [Google Scholar] [CrossRef]
- Naseer, T.; Spinello, L.; Burgard, W.; Stachniss, C. Robust visual robot localization across seasons using network flows. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada 27–31 July 2014; pp. 2564–2570. [Google Scholar]
- Hansen, P.; Browning, B. Visual place recognition using HMM sequence matching. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 4549–4555. [Google Scholar]
- Chancán, M.; Milford, M. DeepSeqSLAM: A Trainable CNN+RNN for Joint Global Description and Sequence-based Place Recognition. arXiv 2020, arXiv:2011.08518. [Google Scholar]
- Garg, S.; Milford, M. SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition. IEEE Robot. Autom. Lett. 2021, 6, 4305–4312. [Google Scholar] [CrossRef]
- Brudno, M.; Malde, S.; Poliakov, A.; Do, C.B.; Couronne, O.; Dubchak, I.; Batzoglou, S. Glocal alignment: Finding rearrangements during alignment. Bioinformatics 2003, 19, i54–i62. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [Google Scholar] [CrossRef]
- Garg, S.; Suenderhauf, N.; Milford, M. Don’t look back: Robustifying place categorization for viewpoint-and condition-invariant place recognition. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3645–3652. [Google Scholar]
- Gadd, M.; De Martini, D.; Newman, P. Look around you: Sequence-based radar place recognition with learned rotational invariance. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, ON, USA, 20–23 April 2020; pp. 270–276. [Google Scholar]
- Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 year, 1000 km: The Oxford RobotCar dataset. Int. J. Robot. Res. 2017, 36, 3–15. [Google Scholar] [CrossRef]
- Sünderhauf, N.; Neubert, P.; Protzel, P. Are we there yet? Challenging SeqSLAM on a 3000 km journey across all four seasons. In Proceedings of the Workshop on Long-Term Autonomy, IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6 May 2013. [Google Scholar]
Layer | Size | Layer | Size | Layer | Size | Layer | Size |
---|---|---|---|---|---|---|---|
conv1 | 112 × 112 × 32 | conv4 | 14 × 14 × 128 | fc7 | 2048 | z_mean | 128 |
conv2 | 56× 56 × 64 | conv5 | 7 × 7 × 128 | fc8 | 1024 | z_var | 128 |
conv3 | 28 × 28 × 64 | fc6 | 4096 | fc9 | 512 | sampling | 128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Han, C.; Lee, S. Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features. Sensors 2021, 21, 4103. https://doi.org/10.3390/s21124103
Oh J, Han C, Lee S. Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features. Sensors. 2021; 21(12):4103. https://doi.org/10.3390/s21124103
Chicago/Turabian StyleOh, Junghyun, Changwan Han, and Seunghwan Lee. 2021. "Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features" Sensors 21, no. 12: 4103. https://doi.org/10.3390/s21124103
APA StyleOh, J., Han, C., & Lee, S. (2021). Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features. Sensors, 21(12), 4103. https://doi.org/10.3390/s21124103