Improvement of RTT Fairness Problem in BBR Congestion Control Algorithm by Gamma Correction
Abstract
:1. Introduction
2. Background
2.1. BBR Behavior Analysis
2.2. BBR’s RTT Fairness
3. The Proposed Algorithm: BBR-GC
3.1. Design Motivation
Algorithm 1: ProbeBW phase in BBR-GC |
Input: rtt_us, inflight, has loss//The value of rtt_us is updated when an ACK is received Output: pacing gain 1: RTTmin = min (RTTmin, rtt_us); 2. RTTmax = max (RTTmax, rtt_us); Phase 1: probe up 3. For every ACK do 4: if inflight < 1BDP then 5: pacing_gain = Pup 6: return 7: end if 8: if pacing_gain < 1.0 and inflight < 1BDP then 9: pacing_gain = 1.0 10: end if Phase 2: probe down 1: if inflight > 1.25BDP or has loss then 2: pacing_gain = Pdown 3: return 4: end if Phase 3: next six cycles 1: if pacing gain == 1.0 then 2: return 3: end if |
3.2. Algorithm Model Analysis
4. Results and Evaluation
4.1. RTT Fairness
4.2. Channel Uutilization
4.3. Retransmission
4.4. Latency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsiropoulou, E.E.; Katsinis, G.K.; Vamvakas, P.; Papavassiliou, S. Efficient uplink power control in multi-service two-tier femtocell networks via a game theoretic approach. In Proceedings of the 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Berlin, Germany, 25–27 September 2013; pp. 104–108. [Google Scholar]
- Tsiropoulou, E.E.; Vamvakas, P.; Katsinis, G.K.; Papavassiliou, S. Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks. Comput. Commun. 2015, 72, 38–48. [Google Scholar] [CrossRef]
- Floyd, S.; Handley, M.; Padhye, J. A Comparison of Equation-Based and AIMD Congestion Control. 2000. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.7442&rep=rep1&type=pdf (accessed on 21 April 2020).
- Yang, Y.R.; Lam, S.S. General AIMD congestion control. In Proceedings of the 2000 International Conference on Network Protocols, Osaka, Japan, 14–17 November 2000; pp. 187–198. [Google Scholar]
- Floyd, S.; Henderson, T. The NewReno Modification to TCP’s Fast Recovery Algorithm. 1999. Available online: https://tools.ietf.org/html/rfc2582 (accessed on 21 April 2020).
- Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings of the IEEE Infocom, Hong Kong, China, 7–11 March 2004; Volume 4, pp. 2514–2524. [Google Scholar]
- Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74. [Google Scholar] [CrossRef]
- Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. ACM Queue 2016, 14, 50:20–50:53. [Google Scholar] [CrossRef]
- Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR Congestion Control. In Proceedings of the IETF 97th Meeting, Seoul, Korea, 13–18 November 2016; Available online: https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf (accessed on 18 February 2020).
- Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR Congestion Control: An Update. Available online: https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf (accessed on 2 April 2020).
- Kleinrock, L. Power and deterministic rules of thumb for probabilistic problems in computer communications. In Proceedings of the International Conference on Communications, Boston, MA, USA, 10–14 June 1979; Volume 43, pp. 1–43. [Google Scholar]
- Hock, M.; Bless, R.; Zitterbart, M. Experimental evaluation of BBR congestion control. In Proceedings of the International Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017; pp. 1–10. [Google Scholar]
- Ma, S.; Jiang, J.; Wang, W.; Li, B. Fairness of Congestion-Based Congestion Control: Experimental Evaluation and Analysis. arXiv 2017, arXiv:1706.09115. [Google Scholar]
- Scholz, D.; Jaeger, B.; Schwaighofer, L.; Raumer, L.; Geyer, F.; Carle, G. Toward a Deeper Understanding of TCP BBR Congestion Control. In Proceedings of the IFIP Networking, Zurich, Switzerland, 14–16 May 2018; pp. 1–9. [Google Scholar]
- Mahmud, I.; Kim, G.H.; Lubna, T. BBR-ACD: BBR with advanced congestion detection. Electronics 2020, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Jiang, X.; Jin, G. Rethinking the rate estimation of BBR congestion control. Electron. Lett. 2020, 56, 239–241. [Google Scholar] [CrossRef]
- Najmuddin, S.; Asim, M.; Munir, K.; Baker, T.; Guo, Z.; Ranjan, R. A BBR-based congestion control for delay-sensitive real-time applications. Computing 2020, 102, 2541–2563. [Google Scholar] [CrossRef]
- Do, H.; Gregory, M.A.; Li, S. SDN-basedWireless Access Networks Utilising BBR TCP Congestion Control. In Proceedings of the 29th International Telecommunication Networks and Applications Conference (ITNAC), Auckland, New Zealand, 27–29 November 2019; pp. 1–8. [Google Scholar]
- Wei, W.; Xue, K.; Han, J.; Xing, Y.; Wei, D.S.; Hong, P. BBR-based Congestion Control and Packet Scheduling for Bottleneck Fairness Considered Multipath TCP in Heterogeneous Wireless Networks. IEEE Trans. Veh. Technol. 2020, 70, 914–927. [Google Scholar] [CrossRef]
- Jia, M.; Sun, W.; Wang, Z.; Yan, Y.; Qin, H.; Meng, K. MFBBR: An Optimized Fairness-aware TCP-BBR Algorithm in Wired-cumwireless Network. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 171–176. [Google Scholar]
- Grazia, C.A.; Klapez, M.; Casoni, M. BBRp: Improving TCP BBR performance over WLAN. IEEE Access 2020, 8, 43344–43354. [Google Scholar] [CrossRef]
- Cardwell, N.; Cheng, Y.; Yeganeh, S.H.; Swett, I.; Vasiliev, V.; Jha, P.; Seung, Y.; Mathis, M.; Jacobson, V. BBRv2: A Model-Based Congestion Control. In Proceedings of the ICCRG IETF 104th Meeting, March 2019; Available online: https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00 (accessed on 2 April 2020).
- Cardwell, N.; Cheng, Y.; Yang, K.; Yeganeh, S.H.; Jha, P.; Seung, Y.; Hsiao, L.; Mathis, M.; Swett, I.; Wu, B.; et al. BBR Update: 1: BBR.Swift; 2: Scalableloss Handling. In Proceedings of the IETF 109th Meeting, November 2020; Available online: https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00 (accessed on 7 January 2021).
- Kfoury, E.F.; Gomez, J.; Crichigno, J.; Bou-Harb, E. An emulation-based evaluation of TCP BBRv2 alpha for wired broadband. Comput. Commun. 2020, 161, 212–224. [Google Scholar] [CrossRef]
- Google/BBR, TCP BBR v2 Alpha/Preview Release. 2019. Available online: https://github.com/google/bbr/tree/-v2alpha (accessed on 7 January 2021).
- Miyazawa, K.; Sasaki, K.; Oda, N.; Yamaguchi, S. Cycle and Divergence of Performance on TCP BBR. In Proceedings of the IEEE International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018; pp. 1–6. [Google Scholar]
- Zhang, Y.; Cui, L.; Tso, F.P. Modest BBR: Enabling Better Fairness for BBR Congestion Control. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 00646–00651. [Google Scholar]
- Claypool, S.; Claypool, M.; Chung, J.; Li, F. Sharing but not caring-Performance of TCP BBR and TCP CUBIC at the network bottleneck. In Proceedings of the Fifteenth Advanced International Conference on Telecommunications, Nice, France, 28 July–1 August 2019. [Google Scholar]
- Ware, R.; Mukerjee, M.K.; Seshan, S.; Sherry, J. Modeling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019; pp. 137–143. [Google Scholar]
- Tao, Y.; Jiang, J.; Ma, S.; Wang, L.; Wang, W.; Li, B. Unraveling the RTT-fairness Problem for BBR: A queueing model. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Yang, M.; Yang, P.; Wen, C.; Liu, Q.; Luo, J.; Yu, L. Adaptive-BBR: Fine-grained congestion control with improved fairness and low latency. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Kim, G.H.; Cho, Y.Z. Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement. IEEE Access 2019, 8, 4099–4109. [Google Scholar] [CrossRef]
- Sun, W.; Jia, M.; Zhang, G.; Wang, Z. RFBBR: A Rtt Faireness Awared Algorithm Based on BBR. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 124–131. [Google Scholar]
- Pan, W.; Tan, H.; Li, X.; Li, X. Improved RTT Fairness of BBR Congestion Control Algorithm based on Adaptive Congestion Window. Electronics 2021, 10, 615. [Google Scholar] [CrossRef]
- Zhang, S. An Evaluation of BBR and its variants. arXiv 2019, arXiv:1909.03673. [Google Scholar]
- Jain, V.; Mittal, V.; Tahiliani, M.P. Design and implementation of TCP BBR in ns-3. In Proceedings of the 10th Workshop on Ns-3, Surathkal, India, 13–14 June 2018; pp. 16–22. [Google Scholar]
- Jaeger, B.; Scholz, D.; Raumer, D.; Geyer, F.; Carle, G. Reproducible measurement of TCP BBR congestion control. Comput. Commun. 2019, 144, 31–43. [Google Scholar] [CrossRef]
- Prakash, M.; Abdrabou, A. On the Fidelity of NS-3 Simulations of Wireless Multipath TCP Connections. Sensors 2020, 20, 7289. [Google Scholar] [CrossRef] [PubMed]
- Chivers, Ian, and Jane Sleightholme. An introduction to Algorithms and the Big O Notation. Introduction to Programming with Fortran; Springer: Cham, Switzerland, 2015; pp. 359–364. [Google Scholar]
- Rubinstein-Salzedo, S. Big o notation and algorithm efficiency. In Cryptography; Springer: Cham, Switzerland, 2018; pp. 75–83. [Google Scholar]
- Farid, H. Blind inverse gamma correction. IEEE Trans. Image Process. 2001, 10, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Cheng, F.C.; Chiu, Y.S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 2012, 22, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Rahman, M.; Abdullah-Al-Wadud, M.; Klinge, V.; Mohankumar, S. An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016, 2016, 35. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Eastern Research Laboratory, Digital Equipment Corporation: Hudson, MA, USA, 1984. [Google Scholar]
- Veluswami, S.J.R.; Chinnusamy, K.; Kumar, K.; Klinge, V.; Mohankumar, S. Improvement of Transmission Control Protocol for High Bandwidth Applications. Wirel. Pers. Commun. 2021, 117, 3359–3379. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Li, X.; Tan, H.; Xu, J.; Li, X. Improvement of RTT Fairness Problem in BBR Congestion Control Algorithm by Gamma Correction. Sensors 2021, 21, 4128. https://doi.org/10.3390/s21124128
Pan W, Li X, Tan H, Xu J, Li X. Improvement of RTT Fairness Problem in BBR Congestion Control Algorithm by Gamma Correction. Sensors. 2021; 21(12):4128. https://doi.org/10.3390/s21124128
Chicago/Turabian StylePan, Wansu, Xiaofeng Li, Haibo Tan, Jinlin Xu, and Xiru Li. 2021. "Improvement of RTT Fairness Problem in BBR Congestion Control Algorithm by Gamma Correction" Sensors 21, no. 12: 4128. https://doi.org/10.3390/s21124128
APA StylePan, W., Li, X., Tan, H., Xu, J., & Li, X. (2021). Improvement of RTT Fairness Problem in BBR Congestion Control Algorithm by Gamma Correction. Sensors, 21(12), 4128. https://doi.org/10.3390/s21124128