Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ionic Layer Deposition of Tin–Tungsten Oxides Nanocomposites on Silicon Substrate Planar Surface
3.2. The Elemental Composition of Tungsten–Tin Nanocomposites
3.3. Ionic Layer Deposition of Tungsten–Tin Oxides Nanocomposites on Anodic Alumina Matrices
3.4. Electrophysical Characteristics of TTO Nanocomposites
3.5. Gas Sensitive Properties of TTO Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [Green Version]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 12, 206–217. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice. Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Deng, Y. Semiconducting Metal Oxides for Gas Sensing, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; 253p. [Google Scholar] [CrossRef]
- Zakhlebaeva, A.I.; Reutskaya, O.G.; Gorokh, G.G.; Taratyn, I.A. Semiconductor two-sensor microsystem on nanostructured substrate for detecting the concentration of gases in the environment. Fuller. Nanostruct. Condens. Matter 2016, 1, 484–490. [Google Scholar]
- Sevastyanov, E.; Yu, N.; Maksimova, N.K.; Novikov, V.A.; Rudov, F.V.; Sergeychenko, N.V.; Chernikov, E.V. Influence of the additives Pt, Pd, Au on the surface and in the volume of tin dioxide thin films on electrical and gas sensitive properties. Phys. Technol. Semicond. 2012, 46, 820–828. [Google Scholar] [CrossRef]
- Tang, H.; Yan, M.; Zhang, H.; Li, S.; Ma, X.; Wang, M.; Yang, D. A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 2006, 114, 910–915. [Google Scholar] [CrossRef]
- Punginsang, M.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrafine Bi2WO6 nanoparticles prepared by flame spray pyrolysis for selective acetone gas-sensing. Mater. Sci. Semicond. Process. 2019, 90, 263–275. [Google Scholar] [CrossRef]
- Khatko, V.; Mozalev, A.; Gorokh, G.; Solovei, D.; Guirado, F.; Llobet, E.; Correig, X. Evolution of Surface Morphology and Crystal Texture of WO3 Layers Sputtered onto Si-supported Nanoporous Alumina Templates. J. Electrochem. Soc. 2008, 155, K116–K123. [Google Scholar] [CrossRef]
- Yin, X.-T.; Lv, P.; Li, J.; Jafari, A.; Wu, F.-Y.; Wang, Q.; Dastan, D.; Shi, Z.; Yu, S.; Garmestani, H. Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications. J. Alloys Compd. 2020, 825, 154105. [Google Scholar] [CrossRef]
- Gorokh, G.G.; Pligovka, A.N.; Lozovenko, A.A. Columnar Niobium Oxide Nanostructures: Mechanism of Formation, Microstructure, and Electrophysical Properties. Tech. Phys. 2019, 64, 1657–1665. [Google Scholar] [CrossRef]
- Gorokh, G.G.; Zakhlebayeva, A.I.; Metla, A.I.; Zhilinskiy, V.V.; Murashkevich, A.N.; Bogomazova, N.V. Formation of multi-component matrix metal oxide films in anodic alumina matrixes by chemical deposition. J. Phys. Conf. Ser. 2017, 917, 092011. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Grimes, C.A.; Dickey, E.C. Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance. J. Mater. Res. 2002, 17, 1162–1171. [Google Scholar] [CrossRef]
- Khatko, V.; Gorokh, G.; Mozalev, A.; Solovei, D.; Llobet, E.; Vilanova, X.; Correig, X. Tungsten trioxide sensing layers on highly ordered nanoporous alumina template. Sens. Actuators B Chem. 2006, 118, 255–262. [Google Scholar] [CrossRef]
- Gorokh, G.; Mozalev, A.; Solovei, D.; Khatko, V.; Llobet, E.; Correig, X. Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application. Electrochim. Acta 2006, 52, 1771–1780. [Google Scholar] [CrossRef]
- Yarmolich, M.; Kalanda, N.; Demyanov, S.; Terryn, H.; Ustarroz, J.; Silibin, M.; Gorokh, G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6−x nanopowders formed by the citrate-gel method. Beilstein J. Nanotechnol. 2016, 7, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, A.D.; Sawant, S.S.; Ankamwar, B.G.; Mahajan, C.M. Synthesis of Nanostructured Tin Oxide (SnO2) Powders and Thin Films by Sol-Gel Method. J. Nano-Electron. Phys. 2015, 4, 1–4. [Google Scholar]
- Tolstoy, V.P.; Korotcenkov, G. Successive Ionic Layer Deposition (SILD): Advanced method for deposition and modification of functional nanostructured metal oxides aimed for gas sensor applications. In Metal Oxide Nanostructures and Their Applications; Umar, A.A., Hahn, Y.-B., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2010; Volume 3, pp. 1–58. [Google Scholar]
- Tolstoy, V.P.; Kodintsev, I.A.; Reshanova, K.S.; Lobinsky, A.A. A Brief Review of Metaloxide (Hydroxide)-graphene Nanocomposites Synthesis by Layer-by-layer Deposition from Solutions and Synthesis of CuO Nanorods-graphene Nanocomposite. Mater. Sci. 2017, 49, 28–32. [Google Scholar]
- Gulina, L.B.; Tolstoy, V.P. The synthesis by successive ionic layer deposition of SnMo0.6Oy·nH2O nanolayers on silica. Thin Solid Films 2003, 1–2, 74–77. [Google Scholar] [CrossRef]
- Zakhlebayeva, A.; Lazavenka, A.; Gorokh, G. Multicomponent Sn-Mo-O-containing films formed in anodic alumina matrixes by ionic layer deposition. Mater. Today Proc. 2020, 37, 4064–4070. [Google Scholar] [CrossRef]
- Bogomazova, N.; Gorokh, G.; Zakhlebayeva, A.; Pligovka, A.; Murashkevich, A.; Galkovsky, T. Photosensitive sulphide heterostructures obtained by using successive ionic layer adsorption and reaction method on planar and profiled substrates. J. Phys. Conf. Ser. 2018, 1124, 081032. [Google Scholar] [CrossRef]
- Addab, Y.; Martin, C.; Pardanaud, C.; Khayadjian, J.; Achkasov, K.; Kogut, D.; Cartry, G.; Giacometti, G.; Cabié, M.; Gardarein, J.L.; et al. Formation of Thin Tungsten Oxide Layers: Characterization and Exposure to Deuterium. Phys. Scr. 2016, T165, 014036. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured Tungsten Oxide—Properties, Synthesis and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Gorokh, G.; Zakhlebayeva, A.; Lazavenka, A.; Sobolev, N.; Zhylinski, V.; Bogomazova, N.; Yarmolich, M.; Kalanda, N. Functional Multicomponent Metal Oxide Films Based on Sr, Sn, Fe and Mo in the Anodic Alumina Matrices. Phys. Status Solidi (b) 2020, 257, 1900283. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy, Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004; p. 242. [Google Scholar]
- Larkin, P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 1st ed.; Elsevier: Waltham, MA, USA, 2011; p. 230. [Google Scholar]
- Gorokh, G.G.; Zakhlebayeva, A.I.; Belahurau, Y.e.A.; Khatko, V.V.; Taratyn, I.A. Chemical gas sensors on the nanoporous anodic alumina substrate. J. Nano-Microsyst. Technol. 2014, 9, 45–51. [Google Scholar]
- Korotcenkov, G.; Cho, B.K.; Gulina, L.B.; Tolstoy, V.P. Gas sensor application of Ag nanoclusters synthesized by SILD method. Sens. Actuators B Chem. 2012, 166, 402–410. [Google Scholar] [CrossRef]
- Pathan, H.M.; Lokhande, C.D. Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method. Bull. Mater. Sci. 2004, 27, 85–111. [Google Scholar] [CrossRef]
- Gulina, L.B.; Tolstoi, V.P.; Semishchenko, K.B. Layers of Nanocomposite FeOOH-XH3PW12O40 Synthesized by Ion-Colloid Layering. Russ. J. Appl. Chem. 2010, 83, 154–156. [Google Scholar] [CrossRef]
- Pligovka, A.; Lazavenka, A.; Gorokh, G. Anodic niobia column-like 3-D nanostructures for semiconductor devices. IEEE Trans. Nanotechnol. 2019, 1, 790–797. [Google Scholar] [CrossRef]
- Lozovenko, A.A.; Poznyak, A.A.; Gorokh, G.G. Synthesis of bismuth nanowires for thermoelectric applications. J. Phys. Conf. Ser. 2018, 1124, 022013. [Google Scholar] [CrossRef] [Green Version]
- Gorokh, G.G.; Pashechko, M.I.; Borc, J.T.; Lozovenko, A.A.; Kashko, I.A.; Latos, A.I. Matrix coatings based on anodic alumina with carbon nanostructures in the pores. Appl. Surf. Sci. 2018, 43, 829–835. [Google Scholar] [CrossRef]
- Gorokh, G.; Belahurau, Y.; Zakhlebaeva, A.; Taratyn, I.; Khatko, V. Ring gyroscope sensitive element based on nanoporous alumina. Aircr. Eng. Aerosp. Technol. 2018, 90, 43–50. [Google Scholar] [CrossRef]
Precursor Parameters | Thickness of the TTO Layer, nm | Relative Layering Rate, nm per Cycle | Elemental Composition of the TTO Films According to the Data of X-ray Energy Dispersive Elemental Analysis | ||
---|---|---|---|---|---|
Element | Atomic Content, % | ||||
SnCl2 Na2WO4 | 0.003 M pH = 3.5 0.01 M pH = 8 | 48 (30 cycles) | 1.6 | O | 80.41 |
Sn | 12.17 | ||||
W | 4.07 | ||||
Cl | 1.10 | ||||
Na | 2.25 | ||||
SnF2 Na2WO4 | 0.003 M pH = 3.5 0.01 M pH = 8 | 556 (60 cycles) | 9 | O | 72.12 |
Sn | 15.14 | ||||
W | 11.51 | ||||
F | 1.71 | ||||
Na | 0.84 | ||||
SnF2 Na2WO4 | 0.01 M pH = 3 0.01 M pH = 8 | 3200 (60 cycles) | 533 | O | 76.19 |
Sn | 12.95 | ||||
W | 7.49 | ||||
F | 0.91 | ||||
Na | 0.34 | ||||
SnF2 (NH4)2O·WO3 | 0.01 M pH = 3 0.01 M pH = 3 | 3600 (60 cycles) | 601 | O | 75.45 |
Sn | 14.12 | ||||
W | 9.67 | ||||
Cl | 0.56 | ||||
Na | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorokh, G.; Bogomazova, N.; Taleb, A.; Zhylinski, V.; Galkovsky, T.; Zakhlebayeva, A.; Lozovenko, A.; Iji, M.; Fedosenko, V.; Tolstoy, V. Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. Sensors 2021, 21, 4169. https://doi.org/10.3390/s21124169
Gorokh G, Bogomazova N, Taleb A, Zhylinski V, Galkovsky T, Zakhlebayeva A, Lozovenko A, Iji M, Fedosenko V, Tolstoy V. Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. Sensors. 2021; 21(12):4169. https://doi.org/10.3390/s21124169
Chicago/Turabian StyleGorokh, Gennady, Natalia Bogomazova, Abdelhafed Taleb, Valery Zhylinski, Timur Galkovsky, Anna Zakhlebayeva, Andrei Lozovenko, Michael Iji, Vladimir Fedosenko, and Valeri Tolstoy. 2021. "Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing" Sensors 21, no. 12: 4169. https://doi.org/10.3390/s21124169
APA StyleGorokh, G., Bogomazova, N., Taleb, A., Zhylinski, V., Galkovsky, T., Zakhlebayeva, A., Lozovenko, A., Iji, M., Fedosenko, V., & Tolstoy, V. (2021). Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. Sensors, 21(12), 4169. https://doi.org/10.3390/s21124169