1. Introduction
At present, industrial robots have played an increasingly important role in industrial production against the backdrop of global industrial manufacturing’s gradual intelligent development. In order to make the industrial robot capable of more complex work, the robot control technology requires to have the characteristics of high speed, high precision, multi-coordination and has good dynamic performance. In summary, finding a way to control industrial robotsin a way that makes them respond quickly to the predetermined trajectory instructions while maintaining a high dynamic tracking accuracy, aiming to achieve stable operation, has become an important research topic in the field of industrial robot motion control [
1,
2,
3,
4,
5,
6].
Selecting an appropriate controller is important for system design. Advanced controllers have been proposed recent studies. In [
7], three controllers (PID, Stanley and Sliding Mode Control) weredesigned. Their performance was compared the performance in seven different environments. Their anti-disturbance properties showed which controllers performed well in each environment. In [
8], the comprehensive performance of four controllers (linear quadratic regulator, model predictive controller,
loop shaping and
-synthesis) was compared based on position tracking, vibration damping and control effort for position control and mechanical vibration suppression in compliant link mechanism. The results showed that different controllers have different advantages for their main purposes. However, the classic proportion–integration–differentiation (PID) controller has the advantage of its simple structure, computational efficiency and low cost compared with other advanced controllers; therefore, it is the common controller for industrial robots.
The parameters of the servo controller such as moment of inertia and viscous friction coefficient are extremely important, as they affect the dynamic performance of the controller designs. For example, the inertia and friction coefficient are used to design the speed loop controller and, as the parameters increase, the dynamic responsiveness of the system will be reduced; as the parameters decrease, the system will oscillate. In addition, when the inertia and friction coefficient change which are used to design the position loop controller, the system response will be slow and overshoot [
9]. Therefore, by identifying the inertia and friction coefficient online and self-tuning the parameters of the controller in different industrial application environments, it can have higher response speed and control precision so that the industrial robot system is more accurate and efficient.
In general, the conventional inertia and friction coefficient identification method can be divided into offline identification and online identification [
10]. The offline identification needs to be in a certain reference frame that has fixed parameters and more applicable to the debugging process. The effectiveness of the offline identification method has been verified in the pertinent literature. In [
11], the moment of inertia and friction torque coefficient wereobtained exactly and simultaneously from a half-period integration method using a very low-frequency sinusoidal speed control; it utilized the fact that the sinusoidal speed is in phase with the friction torque and out of phase with the inertia torque. Additionally, in [
12], a method based on the addition of zero mean sinusoidal perturbation to the permanent magnet synchronous motor (PMSM) drive system was proposed in order to estimate the combined moment of inertia within one sinusoidal cycle of perturbation that did not need complex algorithm and the viscous friction can be eliminated. Finally, in [
13], a load torque observer based on sliding mode was proposed for offline inertia identification which is applicable for the mismatch of the inertia always causes load torque observation error under dynamic conditions. However, because of the offline identification requires the drive system to have fixed inertia and friction coefficient, in practice, the parameters of the system will fluctuate with the change of the attitude of the industrial robot and have problems such as a long identification time, low precision and large storage space; therefore, it is not suitable for the dynamic adjustment and control of industrial robot [
14,
15].
Compared to the offline identification method, the online identification method does not need pre-estimate and modeling of the system that means the inertia and friction coefficient can be indeterminate, so it has fewer limitations and covers more complicated situations of the industrial robot. The commonly used online identification methods cover three categories: (1) establishment of high order observer or multi-algorithm compound structure; (2) use the integration method counteracts the effect of the uncertain load torque and periodically updates the observed inertia; (3) various kinds of optimized neural networks are used to identify and self-tune the real-time parameters of the drive system. In general, for the observer method, it has the advantages of strong anti-disturbance and robustness. In [
16], a robust and stable disturbance observer using radial basis function network (RBFN) was proposed so that the parameter variation and external load disturbances can be approximated, and an additional robust control was introduced to compensate for the identification error so that the whole system is stable. In [
17], in order to reduce the calculation burden of the parameters identification, a novel inertia identification algorithm based on the fixed-order empirical frequency-domain optimal parameter estimation was proposed which is more precise and more robust against system delay and errors. In [
18], a single recursive least square estimation method with forgetting factor was proposed to estimate inertia for solving the identification problem that the simultaneous change of load torque and inertia, and the method avoids designing two separate observers and simplifies the computations. Additionally, the integration method can identify the inertia and friction coefficient smoothly and has a stronger anti-noise ability. In article [
19], a variable period velocity differential calculation strategy was proposed to reduce the measurement noise caused by the quantization error of the encoder and the moment of inertia is updated in real time. The integration method can also be combined with the observers, as mentioned in article [
20], which combines the extended state observer (ESO) with the integration method to design an adaptive controller for the PMSM speed-regulation system and improve the adaptation of the system to the variations of inertia. Finally, compared to the methods mentioned above, the neural network is more as an optimization tool to make the result of parameter identification even more excellent. In [
21], a real-time moment of inertia, the identification technique using a Petriprobabilistic fuzzy neural network with an asymmetric membership function was proposed by combining the neural network and integral method to optimize the identification results for the servo drive system.
Although the methods mentioned above have been applied in mechatronic servo systems successfully, there are still some problems to be solved. The method of high order observer or multi-algorithm compound structure has the problems of transient observation result fluctuation and asymptotic convergence verification, and the neural network is more combined with other methods to optimize the identification results. Frequency response is also a reasonable and effective method for the identification of dynamic parameter; however, the signal is inevitably affected by various noises and affect the parameter identification accuracy of frequency response. At the same time, the frequency response is applicable to the low degree of freedom system with known parameters and complete modal information is required; otherwise, the eigenmatrix cannot be inverse in the loss case, so it is not suitable for the parameter identification of the industrial robot. By contrast, the integration method can improve the above problems by counteracting the influence of uncertain load torque and updating the inertia and friction coefficient periodically. However, the conventional integration method has the condition that the speed and acceleration need to be periodic to ensure the system can reach a steady state relatively, and the speed quantization error will cover the real speed change information. For industrial robots, the condition is too harsh, as the robots usually work at irregular speed or position work commands. To reduce the impact of these problems, an improved integration method is proposed to identify the moment of inertia and viscous friction coefficient of the industrial robot servo controller that increases the sampling period by redefining the update condition in this paper, so that the method is no longer limited to periodic speed and acceleration conditions. Then, an optimization approach using the IGSA-IPNN is proposed to filter the speed error which by adding hidden layer of neurons to improve the accuracy of traditional probabilistic neural network training until the training error meets the expectation. As opposed to adding filters to the system, the neural network can easily learn additional information from new samples that improve the identification accuracy as the robot runs and has strong robustness; the oscillation phenomenon of the filter at resonant frequency can also be avoided and the system complexity is simplified. The IGSA is used to optimize the threshold of neural network; the poor local optimization ability and premature convergence problems of the original method are solved and the output of the neural network is more precise.
This paper is organized as follows:
Section 2 presents the classical integration method for the inertia and friction coefficient identification and the process of the controller self-tuning.
Section 3 presents the improved integration method and the process of the IGSA-IPNN optimized method.
Section 4 presents the simulation experiment results and the validity of the proposed method is verified.
Section 5 concludes this paper.
3. Improved Integration Identification Method and IPNN-IGSA Optimization Method
According to the above analyses, the classical identification process of the moment of inertia and viscous friction coefficient has been introduced. However, the classical method still has some weakness that causes the applied range of it under restrictions. In general, the limitations of the classical method include the following:
- 1.
The most important condition of the conventional integration method is that the speed and accelerated speed need to be periodic to ensure the system reach a steady state relatively, meaning that the sampling period is fixed. However, in fact, this condition is too rigorous, because the commands of the servomotor equipment are irregular under normal circumstances.
- 2.
Several key parameters in the conventional integration method have preconditions. For example, the load torque needs to be a constant value or vary slowly during the identification period. Similarly, the moment of inertia and viscous friction coefficient also need to be constant or vary slowly. The motor torque constant needs to be accurate.
- 3.
Although the conventional integration method has ability of noise reduction to decrease the quantization error from encoder, if the accelerated speed changes slowly, the quantization error will cover the real speed change information and make the system instability.
For the purpose of expanding the applied range of the conventional integration method to limit the negative impacts, an improved integration method is proposed to weaken or avoid the first and third limitations, as mentioned above. The first limitation—i.e., the fixed sampling period of the conventional integration method being too rigorous and the accelerated speed measurement error being inversely related to the magnitude of the absolute value of the acceleration, leading to difficulties estimating the accelerated speed accurately when it is not obvious—causes the system to fail to provide a strict accelerated speed for inertia and friction coefficient identification. The third limitation—i.e., that since the quantization error from the encoder exists, the real speed feedback signals will contain noise signals—leads to the system being unable to provide accurate speed information for the identification of the inertia and friction coefficient.
In conclusion, to reduce the accelerated speed estimation error significantly and expand the applied range, an improved integration method by increasing sampling period for the process of the moment of inertia and viscous friction coefficient identification is proposed in this section. Meanwhile, to optimize the speed differential information and reduce the speed quantization error from the encoder, a smoothing approach using the IPNN-IGSA for the speed error measurement to filter out the information that the speed measurement error exceeds the error threshold is proposed in this section.
3.1. Improved Integration Identification Method for Inertia and Friction Coefficient
Most servomotor equipment works in position regulation mode; however the periodic speed command is not suitable for the position regulation mode. Inversely, frequent start–stop motion and reciprocating motion are more usual in position regulation mode. The characteristic of this motion is that the zero-speed point is frequently occurring and the accelerated speed during a start process and stop process is equal to each other. Therefore, readjust the sampling period of the moment of inertia from fixed period to speed equal to zero, readjust the sampling period of the viscous friction coefficient from fixed period to accelerated speed is different of the previous sampling period. The proposed update sampling period can be expressed by mathematical formula as:
Figure 3 is the schematic diagram of the proposed update sampling period. Compared with the sampling period rule of the conventional method, the proposed method in this paper has longer sampling period while reducing the accelerated speed estimation error and more suitable for the servo system position regulation mode. In order to get a better understanding of the proposed method, the detailed steps are mentioned as follows:
Updating sampling period of moment of inertia : Preset a speed threshold and a time threshold firstly that the is the minimum speed that the system can identify and is the minimum identification duration time of the system. If the real-time speed of motor is larger than while the time of duration is larger than , move to the next step, otherwise, repeat the above process. Then, update the if the motor speed is equal to zero, otherwise repeat the process. Finally, move back to the initial step to update the moment of inertia for the next period.
Updating sampling period of viscous friction coefficient
: Differentiating the speed firstly and preset the accelerated speed threshold
which is the minimum accelerated speed that the system can identify. If the absolute value of the real-time accelerated speed is larger than
while the time of duration is larger than time threshold
, move to the next step, otherwise, repeat the above process. Then, updating the
if the absolute value of the real time accelerated speed
is not equal to the last absolute value of the accelerated speed
, otherwise repeat the process. Finally, move back to the initial step to update the viscous friction coefficient for the next period. The flow chart of the update process is shown in
Figure 4.
In conclusion, compared with the conventional method by fixed sampling period, the proposed method in this paper which increase the sampling period expand the applied range especially for the servo system position regulation mode and reduce the accelerated speed estimation error to provide a cleaner input for identification. The experimental verification part will be given below.
3.2. IPNN-IGSA Optimization Method for Speed Measurement Error
The network structure of the proposed IPNN-IGSA comprises four layers including the input layer, the pattern layer, the summation layer and the decision layer. In order to improve the accuracy of neural network training, a hidden layer of neurons is added between the input layer and the pattern layer until the training error meets the expectation. The signal propagation of each layer is described in detail as follows.
Input layer: The input data is derived from the training sample values, and then the input values are passed to all the pattern units. In this paper, the input data is the speed error
which is obtained by subtracting the output of the estimated speed from the output of the command speed that can be expressed as
Suppose the output of the neural network is
types of data (in this paper, the neural network outputs two types of data, one is the data whose error is less than the threshold and can be used for the parameter identification, the other one is the data with larger errors) and the
is the neuron belonging to the
class. The scalar product formula is obtained by multiplying the speed error with the weighting coefficient
, and then input to the pattern layer for the next calculation. The scalar product is expressed as
Pattern layer: The number of pattern neurons is equal to the number of training data and each pattern neuron belongs to one type. The nonlinear operation is performed and use it as an activation function that is shown in (32). The probability of the output of the
neuron of type
is shown in (33).
where
is the smoothing parameter, and
is the dimension of training dataset.
Summation layer: This layer calculates the average value of the output of neurons in each pattern layer with the same type, and calculates the maximum probability that the data belongs to this category. The probability density function of the type
is obtained by Parzen window method, as shown in (34). Additionally, the output of the
summation neuron is calculated by (35).
Decision layer: The decision layer will estimate the probability of input vectors according to various types and select the neurons with the maximum probability density as the output. The output has only one weight, determined by the lost parameter, the prior probability, and the training pattern for each category. The output of the decision neuron is calculated by:
In order to improve the accuracy of neural network filtering, the probabilistic neural network is trained by increasing the number of hidden layer neurons. When the training error does not meet the expectation, a hidden layer of neurons is added between the input layer and pattern layer until the training error meets the expectation. The network structure is shown in
Figure 5.
For the neural network, the thresholds and weights are the most important parameters which determine the accuracy of the output results. In order to improve the problem, an intelligence optimization algorithm IGSA is applied in this paper to optimize the thresholds and weights.
There are four variables that are active gravitational mass, passive gravitational mass, inertial mass and position of each agent in IGSA optimization algorithm. Assuming that the system has
agents in the search area. Define the
(
) as the position of the
agent where
is the
dimension value of the agent
. The force acted on agent
by agent
is shown in formula (37).
where
is gravitational coefficient which control the accuracy of the search and be decreased with the time passed by,
is the passive gravitational mass connected with agent
,
is the active gravitational mass connected with agent
,
is Euclidean distance between agent
and agent
,
is a small constant.
The gravitational constant
is defined as:
where
is the initial value,
is the descending coefficient and
is the maximum number of the iterations.
The resultant force applied on agent
in
dimension is shown as
The
is the set of the first
agents with the biggest mass and will linearly decreased with iteration
. The
is a random variable in the interval
. According to the Newton’s second law, the acceleration of agent
in direction of the
dimension is as follows:
where
is the inertial mass of agent
. The inertia masses and gravitational are updated by the following equations.
The is the fitness value of agent , and are the best and worst fitness values, respectively.
For the propose of improving the poor local optimization ability and premature convergence, IGSA adjusts the inertia weight and boundary variation dynamically. Finally, the speed and position of agent can be updated as follows:
where
is a uniform random variable in the interval
, the size of
and
is according to the actual problem, the
is the maximum number of iterations. The flow chart of the IPNN-IGSA is shown in
Figure 6.