Pavement Quality Index Rating Strategy Using Fracture Energy Analysis for Implementing Smart Road Infrastructure
Abstract
:1. Introduction
1.1. Network Level Pavement Management System
1.2. Overview of Pavement Instrumentation
1.3. The Purpose and Significance of This Study
2. Materials and Methods
- Dmax = maximum possible deductible points due to distress;
- DP = Actual total deductible points;
- a and b are constants.
2.1. Components of Smart Road-Management Infrastructure
Experimental Set-Up of Smart Instrumentation for Pavements
2.2. Pavement Performance Stiffness Variable Indicators
2.2.1. Traffic Loading
2.2.2. Material Characterisation and Pavement Geometry
2.2.3. Environmental and Climatic Conditions
2.2.4. Pavement Evaluation Matrix
3. Analysis and Modelling
Discrete Analysis
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Srinivasu, B.; Rao, P.S. Infrastructure Development and Economic Growth: Prospects and Perspective. JBM SSR 2013, 2, 81–91. [Google Scholar]
- Fortes, S.I.A. Simplified Methodology to Establish Pavement Quality; Department of Civil Engineering, Architecture and Georesources, Instituto Superior Technico, Lisbon University: Lisbon, Portugal, 2015. [Google Scholar]
- The Role of Operations and Maintenance in Asset Management. A Sustainable Service Delivery Primer. 2019. Available online: https://pdf4pro.com/view/the-role-of-operations-and-maintenance-in-asset-management-5b8ea3.html (accessed on 30 April 2021).
- Basiago, A.D. Economic, Social and Environmental Sustainability in Development Theory and Urban Planning Practice. Environmentalist 1999, 19, 145–161. [Google Scholar] [CrossRef]
- Huang, Y.H. Pavement Analysis and Design, 2nd ed.; Pearson Education Inc., Prentice Hall and Education Inc.: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Markovich, J.; Lucas, K. The Social and Distributional Impacts of Transport: A Literature Review; Transport Studies Unit School of Geography and the Environment, University of Oxford: Oxford, UK, 2011; Available online: http://www.tsu.ox.ac.uk/ (accessed on 30 April 2021).
- Little, N.D.; Jones, R.D. Chemical and Mechanical Processes of Moisture Damage in Hot-Mix Asphalt Pavements. In Proceedings of the Moisture Sensitivity of Asphalt Pavements—A National Seminar, San Diego, CA, USA, 4–6 February 2003; Transportation Research Board of the National Academics: San Diego, CA, USA. [Google Scholar]
- Mechanistic-Empirical Pavement Design Guide; ARA Inc.; ERES Consultants Division. Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures; Final Report. NCHRP Project 1-37A; Transportation Research Board of the National Academies: Washington, DC, USA, 2004. [Google Scholar]
- Jayawickrama, P.W.; Lytton, R.L. Methodology for Predicting Asphalt Concrete Overlay Life against Reflection Cracking. In Proceedings of the Sixth International Conference on Structural Design of Pavements, Ann Arbor, MI, USA, 13–17 July 1987; pp. 912–924. [Google Scholar]
- Saevarsdottir, T.; Erlingsson, S. Water Impact on the Behaviour of Flexible Pavement Structures in an Accelerated Test. Road Mater. Pavement Des. 2013, 14, 256–277. [Google Scholar] [CrossRef]
- Kordi, N.E.; Endut, I.R.; Baharom, B. Types of Damages on Flexible Pavement for Malaysian Federal Road. In Proceedings of the Malaysian Universities Transportation Research Forum and Conferences, Kajang, Malaysia, 21 December 2010. [Google Scholar]
- Park, K.; Thomas, N.; Lee, W. Applicability of the International Roughness Index as a Predictor of Asphalt Pavement Condition. J. Transp. Eng. 2007, 133, 706–709. [Google Scholar] [CrossRef]
- Ksaibati, K.; Mahmood, S. Utilizing the Long-Term Pavement Performance Database in Evaluating the Effectiveness of Pavement Smoothness; The University of Wyoming: Laramie, WY, USA, 2002. [Google Scholar]
- Marshall, C.; Meier, R.; Welch, M. Seasonal Temperature Effects on Flexible Pavements in Tennessee. Transp. Res. Rec. 2001, 1764, 89–96. [Google Scholar] [CrossRef]
- Zuo, G. Impacts of Environmental Factors on Flexible Pavements. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2003. [Google Scholar]
- Santos, J.; Ferreira, A.; Flintsch, G. An Adaptive Hybrid Genetic Algorithm for Pavement Management. Int. J. Pavement Eng. 2017, 20, 266–286. [Google Scholar] [CrossRef]
- Sheppard, S.; Blank, L. A Decision Support System for Urban Pavement Management. J. Adv. Eng. Softw. 1983, 5, 190–195. [Google Scholar] [CrossRef]
- Reza, F.; Boriboonsomsin, K.; Bazlamit, S. Development of a Pavement Quality Index for the State of Ohio. In Proceedings of the paper for 85th Annual Meeting of The Transportation Research Board, Washington, DC, USA, 22−26 January 2006. [Google Scholar]
- Smart Infrastructure Facility. Infrastructure Imperatives for Australia; University of Wollongong: Wollongong, Australia, 2018; Available online: Smart.uow.edu.au (accessed on 30 April 2021).
- Austroads. Building and Construction Procurement Guide—Principles and Options; Austroads Project No: TO1641, Austroads Publications Number AP-G92-14A4; Austroads: Sydney, Australia, 2014; ISBN 978-925037-19-7. [Google Scholar]
- Ghosni, N.; Samali, B.; Valipour, H. Flexural behaviour of High Strength Concrete Composite Incorporating Long Hooked-End Steel Fibres. In Proceedings of the 23rd Australian Conference on the Mechanics of Structures and Materials (ACMSM23), Lismore, Australia, 9–12 December 2014; pp. 327–332, ISBN 9780994152008. [Google Scholar]
- Witczak, M.W.; Yoder, E.J. Principles of Pavement Design, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1975; pp. 24–125. [Google Scholar]
- Al-Zuhairi, A.H.; Taj, A.I. Finite Element Analysis of Concrete Beam under Flexural Stresses Using Meso-Scale Model. Civ. Eng. J. 2018, 4, 1288. [Google Scholar] [CrossRef] [Green Version]
- Mostafavi, M.; Baimpas, N.; Tarleton, E.; Atwood, R.; McDonald, S.; Korsunsky, A.; Marrow, T. Three-dimensional crack observation, quantification and simulation in a quasi-brittle material. Acta Mater. 2013, 61, 6276–6289. [Google Scholar] [CrossRef]
- Rots, J.G. Computational Modeling of Concrete Fracture. Ph.D. Thesis, Technische Hogeschool Delft, Delft, The Netherlands, 1988. [Google Scholar]
- OECD. Organisation for Economic Co-Operation and Development; OECD Publications and Information Center: Washington, DC, USA, 1985; pp. 1–26. [Google Scholar]
- Tabatabee, N.; Al-Qadi, I.L.; Sebaaly, P.E.E. Field Investigation of Pavement Instrumentation Methods. JTEVA 1992, 20, 144–151. [Google Scholar]
- ASTM International. ASTM D6433-07, Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Janani, L.; Sunitha, V.; Samson, M. Influence of Surface Distresses on Smartphone-Based Pavement Roughness Evaluation. Int. J. Pavement Eng. 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.; Heitzman, M. Dynamic Modulus and Repeated Load Tests of Cold In-Place Recycling Mixtures Using Foamed Asphalt. J. Mater. Civ. Eng. 2009, 21, 279–285. [Google Scholar] [CrossRef]
- Kim, M.; Buttlar, G.W.; Baek, J.; Al-Qadi, I.L. Field and Laboratory Evaluation of Fracture Resistance of Illinois Hot-Mix Asphalt Overlay Mixtures. Transportation Research Record. J. Transp. Res. Board 2009, 2127, 146–154. [Google Scholar] [CrossRef]
- Kamel, N.; Rutka, A. PAMFIS: Pavement Analysis and Management Feedback Information Systems. In Proceedings of the Roads and Transportation Association of Canada Conference, Calgary, AB, Canada, 17–21 September 1975. [Google Scholar]
- Ahmed, M.Y.; Nury, A.H.; Islam, F.; Alam, M.M.J.B. Evaluation of Geotechnical Properties and Structural Strength Enhancing Road Pavement Failure along Sylhet-Sunamganj Highway, Bangladesh. J. Soil Sci. Environ. Manag. 2012, 3, 110–117. [Google Scholar] [CrossRef]
- NCHRP. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures: Appendix RR-Finite Element Procedures for Flexible Pavement Analysis; Transportation Research Board, National Research Council: Washington, DC, USA, 2004. [Google Scholar]
- Erlingsson, S. Numerical Modelling of Thin Pavements Behaviour in Accelerated HVS Tests. Road Mater. Pavement Des. 2007, 8, 719–744. [Google Scholar] [CrossRef]
- South African National Roads Agency SOC LTD. South African Pavement Engineering Manual, 2nd ed.; The South African National Roads Agency: Pretoria, South Africa, 2014; ISBN 978-1-920611-00-2.
- Lekarp, F.; Isacsson, U.; Dawson, A. State of the Art. II: Permanent Strain Response of Unbound Aggregates. J. Transp. Eng. 2000, 126, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Lekarp, F.; Isacsson, U.; Dawson, A. State of the Art I: Resilient Response of Unbound Aggregates. J. Transp. Eng. 2000, 126, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Erlingsson, S. Impact of Water on the Response and Performance of a Pavement Structure in an Accelerated Test. Road Mater. Pavement Des. 2010, 11, 863–880. [Google Scholar] [CrossRef]
- Dong, Z.J.; Li, S.; Wen, J.; Chen, H. Asphalt Pavement Structural Health Monitoring Utilizing FBG Sensors. Adv. Eng. Forum 2012, 5, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Mahmud, K.; Ahsan, S. Stress-Strain Characteristics of Flexible Pavement Using Finite Element Analysis. Int. J. Civ. Struct. Eng. 2011, 2, 233–240. [Google Scholar]
- Abejide, S.O.; Hassan, M.M. Moisture Content Numerical Simulation on Structural Damage of Hot-Mix Asphaltic Pavement. In Proceedings of the Second International Conference on Civil Engineering and Materials Science (ICCEMS), Seoul, Korea, 26–28 May 2017. [Google Scholar]
- Kazmierowski, T.J.; Bradbury, A.; Hajek, J.; Jones, G. Effectiveness of High Performance Thin Surfacings in a Wet-Freeze Environment, 72nd ed.; Transportation Research Board Annual Meeting: Washington, DC, USA, 1993. [Google Scholar]
- Ademila, O. Evaluation of structural stability by characterization of lateritic soils with rock flour along Ibadan-Iwo-Osogbo Highway, Southwestern Nigeria. 3rd International Conference on Science and Sustainable Development (ICSSD 2019). IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1299, 012072. [Google Scholar] [CrossRef]
- Zárate, F.; Oñate, E. A simple FEM–DEM technique for fracture prediction in materials and structures. Comp. Part. Mech. 2015, 2, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, S.; Takada, S. Development of FEM–DEM Combined Method for Fracture Analysis of a Continuous Media; Memoirs of the Graduate School of Science and Technology, Kobe University: Kobe, Japan, 2005; Volume 2005, pp. 780_15–780_25. [Google Scholar]
- Wittmann, E. ‘Discrete Analysis’: An Approach to Fundamental Ideas of Analysis. Educ. Stud. Math. 1980, 11, 383–392. [Google Scholar] [CrossRef]
- Gao, X.; Koval, G.; Chazallon, C. A Discrete Element Model for Damage and Fatigue Crack Growth of Quasi-Brittle Materials. Adv. Mater. Sci. Eng. 2019, 2019, 6962394. [Google Scholar] [CrossRef] [Green Version]
- National Treasury. Standard for Infrastructure Procurement and Delivery Management, 1st ed.; Department of National Treasury: Pretoria, South Africa, 2015.
- Rahman, S.; Erlingsson, S. Predicting Permanent Deformation Behaviour of Unbound Granular Materials. Int. J. Pavement Eng. 2015, 16, 587–601. [Google Scholar] [CrossRef]
- Francisco, E.J.; Evandro, P.J.; Jorge, B.S. Viscoelastic and Elastic Structural Analysis of Flexible Pavements. In Proceedings of the CILAMCE 2005-ABMEC & AMC, Guarapart, Brazil, 19–21 October 2005. [Google Scholar]
- Huang, W.; Wang, H.; Huang, L. Viscoelastic Analysis of Flexible Pavements Embedded with Controlled Low-Strength Material Bases Using Finite Element Method. In Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017), Beijing, China, 14–16 April 2017. [Google Scholar]
- De Maeijer, K.; Geert, L.; Geert, P.; Vuye, C.; Voet, E.; Van den Bergh, W.; Vanlanduit, S.; Braspenninckx, J.; Stevens, N.; Wolf, J. Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures 2019, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Hasan, O.A.; Boyce, M.C. A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers. Polym. Eng. Sci. 1995, 35, 331–344. [Google Scholar] [CrossRef]
- Kim, Y.R.; Guddati, M.N.; Underwood, B.S.; Yun, T.Y.; Subramanian, V.; Savadatti, S.; Thirunavukkarasu, S. Development of a Multiaxial Viscoelastoplastic Continuum Damage Model (VEPCD_FEP++); Final Report FHWA-HRT-08-073; Federal Highway Administration: Washington, DC, USA, 2009.
- Abejidi, S.O.; Mostafa, M.M.H.; Adedeji, J. Development of an Ontology Based Expert System for Determining the Performance Indicator for HMA Pavements. In Proceedings of the 12th Conference on Asphalt Pavements for Southern Africa CAPSA, Sun City, South Africa, 13–16 October 2019; pp. 1179–1187. [Google Scholar]
- Baum-Snow, N.; Turner, M.A. Transportation Infrastructure and the Decentralization of Chinese Cities. Asian Dev. Rev. 2017, 34, 25–50, MIT Press Journals. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials. AASHTO Guide for Design of Pavement Structures; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1993. [Google Scholar]
- Mechanistic–Empirical Pavement Design Guide: A Manual of Practice; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008.
Pavement Distress | Pavement Deterioration | Counter Measure |
---|---|---|
Pavement Cracking | Traffic Loading | Appropriate pavement thickness design; Diversion of traffic where necessary |
Pavement Distortion | Environmental/Climatic Factors | Appropriate camber requirement; Appropriate grade or slope design |
Pavement Disintegration | Drainage Effect | Provision of side ditches, verges or side drains; Appropriate slope and camber design |
Skidding Resistance | Material Quality | Appropriate selection of material requirement and appropriate laboratory checks for quality and standards control |
Surfacing/Roughness | Utility/Service Cuts | Appropriate re-sealing where necessary, otherwise avoid cutting pavement for services; Use under-pavement bore for fibre connection cables and utility services |
Mode I Failure | Construction Defects | Appropriate supervision and compaction requirement |
Time | T1 | T2 | GT (T1) | GT (T2) | E (T1) | E (T2) |
---|---|---|---|---|---|---|
10 | 23.87 | 24.1 | 1.751691 | 1.710227 | 398,204.4 | 395,738.2 |
20 | 24.62 | 24.8 | 1.59182 | 1.565145 | 388,558.1 | 386,910 |
30 | 25.06 | 25 | 1.502769 | 1.514706 | 383,008.1 | 383,760.3 |
40 | 24.94 | 24.9 | 1.526708 | 1.540793 | 384,513.9 | 385,394.9 |
50 | 25.12 | 25.1 | 1.490896 | 1.502769 | 382,257.5 | 383,008.1 |
60 | 25.37 | 25.2 | 1.442125 | 1.477127 | 379,145.6 | 381,383.6 |
70 | 25.75 | 25.6 | 1.370139 | 1.394475 | 374,463.9 | 376,059 |
80 | 26.06 | 25.9 | 1.31332 | 1.335112 | 370,687.6 | 372,144.8 |
90 | 26.12 | 25.9 | 1.302519 | 1.335112 | 369,961 | 372,144.8 |
100 | 26.19 | 26 | 1.289999 | 1.324184 | 369,115.3 | 371,415.5 |
110 | 26.37 | 26.3 | 1.2582 | 1.279336 | 366,949.2 | 368,391.8 |
120 | 26.69 | 26.6 | 1.203068 | 1.22525 | 363,129.9 | 364,676.7 |
130 | 26.94 | 26.8 | 1.161233 | 1.182852 | 360,173.7 | 361,707.9 |
140 | 27.12 | 26.8 | 1.131777 | 1.192929 | 358,060.2 | 362,418.2 |
150 | 27.12 | 26.8 | 1.131777 | 1.192929 | 358,060.2 | 362,418.2 |
160 | 27.12 | 26.7 | 1.131777 | 1.203068 | 358,060.2 | 363,129.9 |
170 | 27.06 | 26.6 | 1.141534 | 1.214976 | 358,763.3 | 363,962 |
180 | 27.25 | 26.9 | 1.110848 | 1.161233 | 356,541.4 | 360,173.7 |
190 | 27.5 | 27.1 | 1.071404 | 1.141534 | 353,638.9 | 358,763.3 |
201 | 27.75 | 27.1 | 1.03301 | 1.131777 | 350,760 | 358,060.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abejide, S.; Mostafa, M.M.H.; Das, D.; Awuzie, B.; Rahman, M. Pavement Quality Index Rating Strategy Using Fracture Energy Analysis for Implementing Smart Road Infrastructure. Sensors 2021, 21, 4231. https://doi.org/10.3390/s21124231
Abejide S, Mostafa MMH, Das D, Awuzie B, Rahman M. Pavement Quality Index Rating Strategy Using Fracture Energy Analysis for Implementing Smart Road Infrastructure. Sensors. 2021; 21(12):4231. https://doi.org/10.3390/s21124231
Chicago/Turabian StyleAbejide, Samuel, Mohamed M. H. Mostafa, Dillip Das, Bankole Awuzie, and Mujib Rahman. 2021. "Pavement Quality Index Rating Strategy Using Fracture Energy Analysis for Implementing Smart Road Infrastructure" Sensors 21, no. 12: 4231. https://doi.org/10.3390/s21124231
APA StyleAbejide, S., Mostafa, M. M. H., Das, D., Awuzie, B., & Rahman, M. (2021). Pavement Quality Index Rating Strategy Using Fracture Energy Analysis for Implementing Smart Road Infrastructure. Sensors, 21(12), 4231. https://doi.org/10.3390/s21124231