Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
2.3. Hyperspectral Image Correction
2.4. Spectral Data Extraction
2.5. Spectral Pretreatment
2.6. Key Wavelength Selection
2.7. PCA for Dimensionality Reduction
2.8. Model Development
3. Results
3.1. Comparison of Spectral Pretreatment Method
3.2. Results of Key Wavelength Selection
3.3. PCA in the NIR Wavelength Ranges
3.4. Classification Results of AFB1 Level
3.5. Influence of Different Dimensionality Reduction Methods
3.6. Comparison of Different Classifiers on Discrimination Results
3.7. Independent Validation of New Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.Y.; Ni, J.G.; Wang, D.W.; Deng, L.M.; Li, J.; Han, Z.Z. Pixel-level aflatoxin detecting in maize based on feature selection and hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118269. [Google Scholar] [CrossRef] [PubMed]
- Teye, E.; Huang, X.; Afoakwa, N. Review on the potential use of near infrared spectroscopy (NIRS) for measurement of chemical residues in food. Am. J. Food Sci. Technol. 2013, 1, 1–8. [Google Scholar]
- FDA. Guidance for industry: Action levels for poisonous or deleterious substances in human food and animal feed. In Content Current as of September; Food and Drug Administration: Silver Spring, MD, USA, 2018; p. 20. [Google Scholar]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J.E. Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends Food Sci. Technol. 2016, 50, 11–25. [Google Scholar]
- Zhou, Q.; Huang, W.Q.; Fan, S.X.; Zhao, F.; Liang, D.; Tian, X. Non-destructive discrimination of the variety of sweet maize seeds based on hyperspectral image coupled with wavelength selection algorithm. Infrared Phys. Technol. 2020, 109, 103418. [Google Scholar] [CrossRef]
- Han, Z.; Gao, J. Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging. Comput. Electron. Agric. 2019, 164, 104888. [Google Scholar] [CrossRef]
- Jiang, J.; Qiao, X.; He, R. Use of Near-Infrared hyperspectral images to identify moldy peanuts. J. Food Eng. 2016, 169, 284–290. [Google Scholar] [CrossRef]
- Bertani, F.R.; Businaro, L.; Gambacorta, L.; Mencattini, A.; Brenda, D.; Di Giuseppe, D.; De Ninno, A.; Solfrizzo, M.; Martinelli, E.; Gerardino, A. Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Control 2020, 112, 107073. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Wang, W.; Yoon, S.C.; Ni, X.; Heitschmidt, G.W. Detection of aflatoxin B-1 (AFB(1)) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging. Biosyst. Eng. 2017, 157, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Yao, H.; Hruska, Z.; Kincaid, R.; Brown, R.L.; Bhatnagar, D.; Cleveland, T.E. Integration of fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images for detection of aflatoxins in corn kernels. Trans. Asabe 2016, 59, 785–794. [Google Scholar]
- Tao, F.; Yao, H.; Hruska, Z.; Liu, Y.; Rajasekaran, K.; Bhatnagar, D. Detection of aflatoxin B1 on corn kernel surfaces using visible-near infrared spectra. J. Near Infrared Spectrosc. 2019, 28, 56–69. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Mahanti, N.K.; Mansuri, S.M.; Tripathi, M.K.; Kotwaliwale, N.; Jayas, D.S. Non-destructive classification and prediction of aflatoxin-B1 concentration in maize kernels using Vis–NIR (400–1000 nm) hyperspectral imaging. J. Food Sci. Technol. 2021, 58, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Kimuli, D.; Wang, W.; Lawrence, K.C.; Yoon, S.C.; Ni, X.; Heitschmidt, G.W. Utilisation of visible/near-infrared hyperspectral images to classify aflatoxin B1 contaminated maize kernels. Biosyst. Eng. 2018, 166, 150–160. [Google Scholar] [CrossRef]
- Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci. Justice 2013, 53, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Allende, P.B.; Conde, O.M.; Mirapeix, J.; Cobo, A.; Lopez-Higuera, J.M. Quality control of industrial processes by combining a hyperspectral sensor and Fisher’s linear discriminant analysis. Sens. Actuators B Chem. 2008, 129, 977–984. [Google Scholar] [CrossRef]
- Xia, C.; Yang, S.; Huang, M.; Zhu, Q.; Guo, Y.; Qin, J. Maize seed classification using hyperspectral image coupled with multi-linear discriminant analysis. Infrared Phys. Technol. 2019, 103, 103077. [Google Scholar] [CrossRef]
- Han, Z.; Deng, L. Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data. Comput. Electron. Agric. 2018, 153, 248–255. [Google Scholar]
- Wang, W.; Heitschmidt, G.W.; Windham, W.R.; Feldner, P.; Ni, X.; Chu, X. Feasibility of Detecting Aflatoxin B-1 on Inoculated Maize Kernels Surface using Vis/NIR Hyperspectral Imaging. J. Food Sci. 2015, 80, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hove, M.; Van Poucke, C.; Njumbe-Ediage, E.; Nyanga, L.K.; De Saeger, S. Review on the natural co-occurrence of AFB1 and FB1 in maize and the combined toxicity of AFB1 and FB1. Food Control 2016, 59, 675–682. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W. Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method. Postharvest Biol. Technol. 2019, 149, 235–246. [Google Scholar] [CrossRef]
- Kowkabi, F.; Keshavarz, A. Using spectral Geodesic and spatial Euclidean weights of neighbourhood pixels for hyperspectral Endmember Extraction preprocessing. ISPRS J. Photogramm. Remote Sens. 2019, 158, 201–218. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemsley, E.K. Discriminant analysis of high-dimensional data:a comparison of principal components analysis and partial least squares data reduction methods. Chemom. Intell. Lab. Syst. 1996, 33, 47–61. [Google Scholar] [CrossRef]
- Wang, W.; Heitschmidt, G.W.; Ni, X.; Windham, W.R.; Hawkins, S.; Chu, X. Identification of aflatoxin B-1 on maize kernel surfaces using hyperspectral imaging. Food Control 2014, 42, 78–86. [Google Scholar] [CrossRef]
- Romero, I. PCA-based noise reduction in ambulatory ECGs. IEEE Comput. Cardiol. 2010, 37, 677–680. [Google Scholar]
- Sun, P.; Bao, K.; Li, H.; Li, F.; Wang, X.; Cao, L.; Li, G.; Zhou, Q.; Tang, H.; Bao, M. An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA. Fuel 2018, 222, 416–423. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, L.; Zhang, Q.; Wei, X. Face recognition based on PCA image reconstruction and LDA. Optik 2013, 124, 5599–5603. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, H.; Zhang, D.; Wang, K. Post-processed LDA for face and palmprint recognition: What is the rationale. Signal Process. 2010, 90, 2344–2352. [Google Scholar] [CrossRef]
- Jiao, L.; Wu, H.; Bie, R.; Umek, A.; Kos, A. Towards Real-Time Multi-Sensor Golf Swing Classification Using Deep CNNs. J. Database Manag. 2018, 29, 17–42. [Google Scholar] [CrossRef]
- Ben-David, A. About the relationship between ROC curves and Cohen’s kappa. Eng. Appl. Artif. Intell. 2008, 21, 874–882. [Google Scholar] [CrossRef]
- Chen, H.; Pan, T.; Chen, J.; Lu, Q. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemom. Intell. Lab. Syst. 2011, 107, 139–146. [Google Scholar] [CrossRef]
- Berardo, N.; Pisacane, V.; Battilani, P.; Scandolara, A.; Pietri, A.; Marocco, A. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agric. Food Chem. 2005, 53, 8128–8134. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ibanez, V.; Soldado, A.; Martinez-Fernandez, A.; de la Roza-Delgado, B. Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 2009, 113, 629–634. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lee, S.; Kim, M.S.; Bae, H.; Cho, B.K. Short wave infrared (SWIR) hyperspectral imaging technique for examination of aflatoxin B-1 (AFB(1)) on corn kernels. Food Control 2015, 51, 171–176. [Google Scholar] [CrossRef]
- Praveen Kumar, D.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion 2019, 49, 1–25. [Google Scholar] [CrossRef]
- Han, Z.; Deng, L. Aflatoxin contaminated degree detection by hyperspectral data using band index. Food Chem. Toxicol. 2020, 137, 111159. [Google Scholar]
Variance (×10−7) | 4.37 | 1.89 | 1.83 |
---|---|---|---|
Wavelength | 1160.5 nm | 1827.9 nm | 1981.0 nm |
Order of size | V0 > V10 = V20 = V50 > V100 | V100 = V50 = V20 > V10 > V0 | V100 > V50 > V20 = V10 > V0 |
Variance (×10−7) | 1.12 | 1.06 | 0.45 |
Wavelength | 1391.8 nm | 1700.9 nm | 1898.0 nm |
Order of size | V20 > V0 = V10 = V50 > V100 | V20 = V10 = V50 > V100 > V0 | V50 = V100 = V20 = V10 > V0 |
Data Set | Real AFB1 Contents | Predicted Results | ||||||
---|---|---|---|---|---|---|---|---|
0 ppb | 10 ppb | 20 ppb | 50 ppb | 100 ppb | Accuracy | Overall Accuracy | ||
Calibration set | 0 ppb | 45 | 0 | 0 | 0 | 0 | 100% | 98.22% |
10 ppb | 0 | 44 | 1 | 0 | 0 | 97.78% | ||
20 ppb | 0 | 1 | 43 | 1 | 0 | 95.56% | ||
50 ppb | 0 | 1 | 0 | 44 | 0 | 97.78% | ||
100 ppb | 0 | 0 | 0 | 0 | 45 | 100% | ||
Prediction set | 0 ppb | 45 | 0 | 0 | 0 | 0 | 100% | 95.56% |
10 ppb | 1 | 43 | 1 | 0 | 0 | 95.56% | ||
20 ppb | 0 | 1 | 42 | 1 | 1 | 93.33% | ||
50 ppb | 0 | 2 | 1 | 41 | 1 | 91.11% | ||
100 ppb | 0 | 0 | 1 | 0 | 44 | 97.78% |
Pretretment | Classification Method | Dimensionality Reduction Algorithms | Dimensions | Classification Results (*/**) | Accuracy | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 50 | 100 | |||||
SG-FD | LDA | PCA | 3 | 45/45 | 42/45 | 38/45 | 37/45 | 43/45 | 91.11% |
ICA | 3 | 43/45 | 41/45 | 31/45 | 24/45 | 36/45 | 77.78% | ||
FA | 3 | 44/45 | 43/45 | 35/45 | 25/45 | 41/45 | 83.56% | ||
t-SNE | 3 | 40/45 | 10/45 | 13/45 | 6/45 | 29/45 | 43.56% | ||
RP | 3 | 37/45 | 9/45 | 15/45 | 13/45 | 28/45 | 45.33% |
Pretretment | Wavelengths or Dimensions | Number of Wavelengths or Dimensions | Accuracy/F1-Score/Kappa | |||
---|---|---|---|---|---|---|
LDA | KNN | NB | DT | |||
SG-FD | Full wavelength | 145 | 94.67% 0.9466 0.9333 | 69.33% 0.6951 0.6166 | 80.89% 0.8076 0.7611 | 91.56% 0.9149 0.8944 |
PCs | 3 | 91.11% 0.9094 0.8889 | 66.67% 0.6610 0.5833 | 72.89% 0.7242 0.6611 | 74.22% 0.7397 0.6778 | |
Key wavelengths | 5 | 79.56% 0.7912 0.7444 | 52.89% 0.5260 0.4111 | 49.33% 0.4942 0.3667 | 70.22% 0.7053 0.6278 | |
PCs + key wavelengths | 8 | 95.56% 0.9554 0.9444 | 74.67% 0.7432 0.6833 | 80.44% 0.8028 0.7556 | 82.67% 0.8265 0.7833 |
Data Set | Real AFB1 Contents | Predicted Results | ||||||
---|---|---|---|---|---|---|---|---|
0 ppb | 10 ppb | 20 ppb | 50 ppb | 100 ppb | Accuracy | Overall Accuracy | ||
Independent validation samples | 0 ppb | 29 | 1 | 0 | 0 | 0 | 96.67% | 88.67% |
10 ppb | 1 | 27 | 2 | 0 | 0 | 90.00% | ||
20 ppb | 0 | 2 | 25 | 2 | 1 | 83.33% | ||
50 ppb | 0 | 1 | 3 | 25 | 1 | 83.33% | ||
100 ppb | 0 | 0 | 1 | 2 | 27 | 90.00% |
Methods | Wavelength Range | AFB1 Concentration Level | Principal Method | Dimensions of Modeling Data | Accuracy of Prediction Set |
---|---|---|---|---|---|
Proposed method | 1100–2000 nm | 0, 10, 20, 50, and 100 ppb | PCA + key wavelengths LDA | 3PCs + 5 key wavelengths | 95.56% and 88.67% |
Tao et al. [11] | 410–1070 nm and 1120–2470 nm | 0, 10, 20, 50, 100, 500, and 1000 ppb | PLS-DA | 18 LVs | 91.4% and 97.1% |
Chakraborty et al. [12] | 400–1000 nm | 25, 40, 70, 200, 300, and 500 ppb | PLS-DA | 12 LVs | 94.7% |
Kimuli et al. [13] | 400–1000 nm | 0, 10, 20, 100, and 500 ppb | PCA FDA | 12 PCs | >96% |
Chu et al. [9] | 1000–2500 nm | <20 ppb, 20–100 ppb, and 100 ppb | PCA SVM | 5 PCs | 82.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Huang, W.; Liang, D.; Tian, X. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. Sensors 2021, 21, 4257. https://doi.org/10.3390/s21134257
Zhou Q, Huang W, Liang D, Tian X. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. Sensors. 2021; 21(13):4257. https://doi.org/10.3390/s21134257
Chicago/Turabian StyleZhou, Quan, Wenqian Huang, Dong Liang, and Xi Tian. 2021. "Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection" Sensors 21, no. 13: 4257. https://doi.org/10.3390/s21134257
APA StyleZhou, Q., Huang, W., Liang, D., & Tian, X. (2021). Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. Sensors, 21(13), 4257. https://doi.org/10.3390/s21134257