Development of a Transient Magnetic Field Sensor Based on Digital Integration and Frequency Equalization
Abstract
:1. Introduction
2. System Specification
3. Modeling and Simulation of Antennas
4. Improvement of Digital Integrator
5. Circuit Design
5.1. Transmitter
5.2. Digital Integration and Frequency Equalization
5.3. Receiver
6. Calibration of the Sensor
6.1. Dynamic Range and Linearity
6.2. Bandwidth
6.3. Uncertainty Analysis
7. Sensor Application
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Li, W.; Qi, L.; Liu, J.; Song, Z.; Wang, J. Design of wideband GHz electric field sensor integrated with optical fiber transmission link for electromagnetic pulse signal measurement. Sensors 2018, 18, 3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Xie, Y.-Z.; Li, K.-J.; Kong, X. A portable electric field detector with precise time base for transient electromagnetic radiation source location. IEEE Trans. Instrum. Meas. 2019, 69, 1408–1415. [Google Scholar] [CrossRef]
- Ma, M.T.; Kanda, M.; Crawford, M.L.; Larsen, E.B. A review of electromagnetic compatibility/interference measurement methodologies. Proc. IEEE 1985, 73, 388–411. [Google Scholar] [CrossRef]
- Baum, C.E.; Farr, E.G. Impulse Radiating Antennas; Springer: Berlin, Germany, 1993; pp. 139–147. [Google Scholar]
- Kanda, M. An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements. IEEE Trans. Electromagn. Compat. 1984, EMC-26, 102–110. [Google Scholar] [CrossRef]
- Bose, S.; Kaur, M.; Barada, K.K.; Ghosh, J.; Chattopadhyay, P.K.; Pal, R. Understanding the working of a B-dot probe. Eur. J. Phys. 2019, 40, 1–13. [Google Scholar] [CrossRef]
- Chao, Y.; Cui, M.; Rongmei, C.; Xin, L. Development of high power transient electromagnetic field sensors. In Proceedings of the Asia Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, Taiwan, 26–29 May 2015; pp. 215–218. [Google Scholar] [CrossRef]
- Kong, X.; Xie, Y.-Z.; Li, Q.; Hu, Y.-H. A multigap loop antenna and norm detector-based nano-second-level transient magnetic-field sensor. IEEE Trans. Instrum. Meas. 2020, 69, 8393–8400. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, W.; Lou, J.; Wang, J.; Zhang, W. Research of accurate digital integrator for Rogowski coil current transformer. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 9–11 December 2019; pp. 249–255. [Google Scholar]
- Han, X.; Xie, J.; Luo, J.; Wu, Y.; Xu, Y. Development of a point coil magnetic field measurement system for pulsed high magnetic fields. In Proceedings of the 11th International Conference on Electrical Machines and Systems (ICEMS 2008), Wuhan, China, 17–20 October 2008; pp. 699–703. [Google Scholar]
- Liu, W.; Jiang, W.; Qi, H. The design of digital amplitude-frequency equilibrium power amplifier. In Proceedings of the International Forum on Information Technology and Applications (IFITA 2010), Kunming, China, 16–18 July 2010; pp. 152–154. [Google Scholar]
- Kavehrad, M.; Lee, S.; Wu, B. Frequency domain equalization of optical channel distortion in free-space optical wireless communications. Opt. East. 2006, 6390, 63900. [Google Scholar] [CrossRef]
- Liu, D.-W.; Tang, Y.-X.; Li, S.-Q.; Da-Wei, L.; You-Xi, T.; Shao-Qian, L. Performance analysis of TDD OFDM systems with phase and amplitude and phase pre-equalization. In Proceedings of the IEEE 60th Vehicular Technology Conference, 2004 (VTC2004-Fall), Los Angeles, CA, USA, 26–29 September 2004; pp. 529–533. [Google Scholar] [CrossRef]
- Long, S.; Khalighi, M.-A.; Wolf, M.; Ghassemlooy, Z.; Bourennane, S. Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications. In Proceedings of the 2015 4th International Workshop on Optical Wireless Communications (IWOW), Istanbul, Turkey, 7–8 September 2015; pp. 16–20. [Google Scholar] [CrossRef]
- Wei, W.; Yue, S.; Xin, N.; Zhi, Z.; Jin, W.; Jing, Y. Development of magnetic field measuring system for fast risetime pulse. High. Volt. Eng. 2020, 46, 2209–2218. [Google Scholar]
- Kong, X.; Lei, L. Application of CST electromagnetic simulation technology in antenna experimental teaching. Exp. Technol. Manag. 2017, 34, 118–121. [Google Scholar]
- Bai, Y.; Wang, J.; Wei, G.; Yang, Y. Design and simulation test of an open D-dot voltage sensor. Sensors 2015, 15, 23640–23652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Wang, J.; Wei, G.; Deng, X. Decomposition of composite electric field in a three-phase D-dot voltage transducer measuring system. Sensors 2016, 16, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Xie, Y.-Z.; Li, Q.; He, S.-Y.; Jin, Y.-B. Development of one-dimensional norm detector for nanosecond-level transient electric field measurement. IEEE Trans. Electromagn. Compat. 2017, 59, 1035–1040. [Google Scholar] [CrossRef]
- McKinley, A.F. Theory of impedance loaded loop antennas and nanorings from RF to optical wavelengths. IEEE Trans. Antennas Propag. 2017, 65, 2276–2281. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Shi, L.; Ma, R.; Huang, Z. Design of electric field sensors for measurement of electromagnetic pulse. Sens. Transducers 2014, 1, 131–135. [Google Scholar]
- Wang, J.; Zhao, Y.; Li, W.; Zeng, X.; Tang, J.; Wang, Y.; Deng, X. Research on transmission line voltage measurement method of D-dot sensor based on Gaussian integral. Sensors 2018, 18, 2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Duan, Y.; Shi, L.; Qiu, S. Laboratory calibration of D-dot sensor based on system identification method. Prime Arch. Sens. 2020, 19, 1–15. [Google Scholar]
- Yan, Z.; Wang, J.; Zhang, W.; Wang, Y.; Fan, J. A miniature ultrawideband electric field probe based on coax-thru-hole via array for near-field measurement. IEEE Trans. Instrum. Meas. 2017, 66, 2762–2770. [Google Scholar] [CrossRef]
- Holloway, C.; Sarto, M.S.; Johansson, M. Analyzing carbon-fiber composite materials with equivalent-layer models. IEEE Trans. Electromagn. Compat. 2005, 47, 833–844. [Google Scholar] [CrossRef]
Uncertainty Component | Maximum Deviation (%) | Distribution | Inclusion Factor (k) | Relative Standard Uncertainty (%) |
---|---|---|---|---|
Uncertainty of impulse current | 0.2 | uniform | 0.115 | |
Uniformity of field | 0.4 | uniform | 0.231 | |
Linearity of the sensor | 0.8 | uniform | 0.462 | |
Disturbance of the sensor to the field | 1.28 | uniform | 0.739 | |
Measurement error of the coil radius | 0.5 | normal | 1 | 0.500 |
Positioning error | 2 | uniform | 1.155 | |
Measurement error of Rogowski coil | 0.24 | normal | 1 | 0.240 |
Repeatability | 0.37 | normal | 1 | 0.370 |
Measurement error of oscilloscope (channel 1) | 0.28 | uniform | 0.162 | |
Measurement error of oscilloscope (channel 2) | 0.28 | uniform | 0.162 | |
Total relative standard uncertainty uc | 1.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, H.; Yao, X.; Chen, J. Development of a Transient Magnetic Field Sensor Based on Digital Integration and Frequency Equalization. Sensors 2021, 21, 4268. https://doi.org/10.3390/s21134268
Ouyang H, Yao X, Chen J. Development of a Transient Magnetic Field Sensor Based on Digital Integration and Frequency Equalization. Sensors. 2021; 21(13):4268. https://doi.org/10.3390/s21134268
Chicago/Turabian StyleOuyang, Hongzhi, Xueling Yao, and Jingliang Chen. 2021. "Development of a Transient Magnetic Field Sensor Based on Digital Integration and Frequency Equalization" Sensors 21, no. 13: 4268. https://doi.org/10.3390/s21134268
APA StyleOuyang, H., Yao, X., & Chen, J. (2021). Development of a Transient Magnetic Field Sensor Based on Digital Integration and Frequency Equalization. Sensors, 21(13), 4268. https://doi.org/10.3390/s21134268