Semantic Data Mining in Ubiquitous Sensing: A Survey
Abstract
:1. Introduction
- We provide a comprehensive perspective on semantic data mining, including different methods and techniques from related areas to be captured under this common topic.
- We discuss relevant applications in the context of ubiquitous sensing, exemplifying the specific implementation of semantic techniques in context.
- We outline interesting future directions for the development and application of approaches and methods for semantic data mining in ubiquitous sensing.
2. Overview of Semantic Data Mining Approaches
2.1. Data Mining Process
2.2. Semantic, Knowledge-Based and Declarative Data Mining
2.3. Explainability and Interpretability in Data Mining
3. Applications in Ubiquitous Sensing
3.1. Environmental Sensing
- Sensor Measurement Lists (SenML; in draft versions it was also called Sensor Markup Language) [76]—a standard aimed at small packets with simple sensor measurements that are easy to use in constrained networks, proposed by the Internet Engineering Task Force (IETF).
- Entity Notation (EN) [77]—another standard aimed at providing semantics for low-resource sensors. It provides the definition of short packets, which are transferred via communication links, and complete packets, derived from the short ones, useful for connection with ontologies.
- Observations and Measurements (O&M; https://www.ogc.org/standards/om; accessed on 13 April 2021) and Sensor Model Language (SensorML; https://www.ogc.org/standards/sensorml; accessed on 13 April 2021)—two complementary specifications proposed by the Open Geospatial Consortium (OGC) for observations and sensors description.
3.2. Sensing in Industrial AI
3.2.1. Formalization of Semantics for Industrial AI Sensing
3.2.2. Knowledge Embedding Methods
3.2.3. Decision Explanation Methods
3.3. Social Sensing
3.3.1. Social Sensing in Ubiquitous and Social Environments
3.3.2. Semantic Social Sensing
3.3.3. Semantic Social Network Analysis
4. Summary, Challenges and Future Directions
- The first challenge is related to the availability of domain knowledge, its form and representation. Semantic data mining approaches differ with respect to the knowledge representation used, for example, from simple annotations to formalized knowledge models. This selection also has an impact on the possible cognitive load of human experts participating in the knowledge acquisition process. Furthermore, in certain domains, formalized knowledge is in fact present in the form of rules, constraints, structures and vocabularies. The introduction of such knowledge into the DM process—if successful—can allow for the alignment of the results of the process with the domain requirements.
- The second important challenge is the proper selection of the phase of the DM where the knowledge is introduced. As we discussed, it is often the case that preliminary stages of the process are very time consuming, so a proper understanding of the data can be achieved. This is why the use of domain knowledge in this stage could be beneficial, for example, as a part of the feature engineering activity. However, in practice, such an approach—while possible—is often overlooked.
- The third challenge is related to the provision of explainability methods. The use of complex black-box machine learning models that offer superior accuracy can result in certain risks in terms of their interpretability. The need to formulate explanations instrumental for understanding the results of the DM process and for putting it in the context of specific domains, is an important requirement. As such, the use of semantic data mining methods can be of particular interest and value for interpretability and explainability, as we have also discussed throughout the methods and application sections.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cuzzocrea, A.; Song, I.Y.; Davis, K.C. Analytics Over Large-Scale Multidimensional Data: The Big Data Revolution! In Proceedings of the 14th International Workshop on Data Warehousing and OLAP at 20th International Conference on Information and Knowledge Management, CIKM 2011, Glasgow, UK, 24–28 October 2011; ACM: New York, NY, USA, 2011; pp. 101–104. [Google Scholar] [CrossRef]
- Klein, D.; Tran-Gia, P.; Hartmann, M. Big Data. Inform. Spektrum 2013, 36, 319–323. [Google Scholar] [CrossRef]
- Luengo, J.; García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. Smart Data. In Big Data Preprocessing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 45–51. [Google Scholar]
- Molnar, C. Interpretable Machine Learning. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 28 February 2020).
- Dou, D.; Wang, H.; Liu, H. Semantic Data mining: A Survey of Ontology-Based Approaches. In Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), Anaheim, CA, USA, 7–9 February 2015; pp. 244–251. [Google Scholar]
- Sirichanya, C.; Kraisak, K. Semantic Data Mining in the Information Age: A Systematic Review. Int. J. Intell. Syst. 2021. [Google Scholar] [CrossRef]
- Ristoski, P.; Paulheim, H. Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey. Web Semant. 2016, 36, 1–22. [Google Scholar] [CrossRef] [Green Version]
- von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R.; Kirsch, B.; Pfrommer, J.; Pick, A.; Ramamurthy, R.; et al. Informed Machine Learning—A Taxonomy and Survey of Integrating Knowledge Into Learning Systems. arXiv 2020, arXiv:1903.12394. [Google Scholar]
- Kim, J.; Wang, G.; Bae, S.T. A Survey of Big Data Technologies and How Semantic Computing Can Help. Int. J. Semant. Comput. 2014, 8, 99–117. [Google Scholar] [CrossRef]
- Shi, F.; Li, Q.; Zhu, T.; Ning, H. A Survey of Data Semantization in Internet of Things. Sensors 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacfah Emani, C.; Cullot, N.; Nicolle, C. Understandable Big Data: A survey. Comput. Sci. Rev. 2015, 17, 70–81. [Google Scholar] [CrossRef]
- Rhayem, A.; Mhiri, M.B.A.; Gargouri, F. Semantic Web Technologies for the Internet of Things: Systematic Literature Review. Internet Things 2020, 11, 100206. [Google Scholar] [CrossRef]
- Fayyad, U.M. Data Mining and Knowledge Discovery: Making Sense Out of Data. IEEE Expert 1996, 11, 20–25. [Google Scholar] [CrossRef]
- Kurgan, L.A.; Musilek, P. A Survey of Knowledge Discovery and Data Mining Process Models. Knowl. Eng. Rev. 2006, 21, 1–24. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Yang, Q. Data Preparation for Data Mining. Appl. Artif. Intell. 2003, 17, 375–381. [Google Scholar] [CrossRef]
- Morik, K.; Scholz, M. The Miningmart Approach to Knowledge Discovery in Databases. In Intelligent Technologies for Information Analysis; Springer: Berlin/Heidelberg, Germany, 2004; pp. 47–65. [Google Scholar]
- SAS Institute. SAS Enterprise Miner: Introduction to SEMMA; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Azevedo, A.; Santos, M. KDD, SEMMA and CRISP-DM: A Parallel Overview. In Proceedings of the IADIS European Conference on Data Mining, Amsterdam, The Netherlands, 22–27 July 2008. [Google Scholar]
- IBM. Have You Seen ASUM-DM; IBM : Armonk, NY, USA, 2015. [Google Scholar]
- Biecek, P. Model Development Process. arXiv 2019, arXiv:1907.04461. [Google Scholar]
- Blockeel, H. Data Mining: From Procedural to Declarative Approaches. New Gener. Comput. 2015, 33, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Blockeel, H. Declarative Data Analysis. Int. J. Data Sci. Anal. 2017, 6, 217–223. [Google Scholar] [CrossRef]
- Atzmueller, M.; Puppe, F.; Buscher, H.P. Exploiting Background Knowledge for Knowledge-Intensive Subgroup Discovery. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, 30 July–5 August 2005; pp. 647–652. [Google Scholar]
- Atzmueller, M.; Seipel, D. Declarative Specification of Ontological Domain Knowledge for Descriptive Data Mining (Extended Version). In 17th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2007) and 21st Workshop on (Constraint), Würzburg, Germany, 4–6 October 2007; Spriner: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Svátek, V.; Rauch, J.; Ralbovský, M. Ontology-Enhanced Association Mining. In Semantics, Web and Mining; Spriner: Berlin/Heidelberg, Germany, 2005; Volume 4289, pp. 163–179. [Google Scholar]
- Atzmueller, M.; Sternberg, E. Mixed-Initiative Feature Engineering Using Knowledge Graphs. In Proceedings of the 9th International Conference on Knowledge Capture (K-Cap), Austin, TX, USA, 4–6 December 2017; ACM Press: New York, NY, USA, 2017. [Google Scholar]
- Ławrynowicz, A. Semantic Data Mining—An Ontology-Based Approach. In Studies on the Semantic Web; IOS Press: Amsterdam, The Netherlands, 2017; Volume 29. [Google Scholar] [CrossRef]
- Nalepa, G.J. Modeling with Rules Using Semantic Knowledge Engineering. In Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2018; Volume 130. [Google Scholar] [CrossRef]
- Cespivova, H.; Rauch, J.; Svatek, V.; Kejkula, M. Roles of Medical Ontology in Association Mining CRISP-DM Cycle. In Proceedings of the ECML/PKDD 2004 Workshop on Knowledge Discovery and Ontologies, Pisa, Italy, 20–24 September 2004. [Google Scholar]
- Kuo, Y.T.; Lonie, A.; Sonenberg, L.; Paizis, K. Domain Ontology Driven Data Mining: A Medical Case Study. In Proceedings of the DDDM ’07: 2007 International Workshop on Domain Driven Data Mining, San Jose, CA, USA, 12 August 2007; ACM: New York, NY, USA; pp. 11–17. [Google Scholar] [CrossRef]
- Sikora, M.; Wróbel, Ł.; Gudyś, A. GuideR: A guided separate-and-conquer rule learning in classification, regression, and survival settings. Knowl. Based Syst. 2019, 173, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Atzmueller, M.; Lemmerich, F.; Reutelshoefer, J.; Puppe, F. Wiki-Enabled Semantic Data Mining—Task Design, Evaluation and Refinement. In Proceedings of the 2nd International Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS2009), Kraków, Poland, 28 November 2009; Volume 545. [Google Scholar]
- Lavrač, N.; Vavpetič, A.; Soldatova, L.; Trajkovski, I.; Novak, P.K. Using Ontologies in Semantic Data Mining With Segs and G-Segs. In Proceedings of the International Conference on Discovery Science, Espoo, Finland, 5–7 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 165–178. [Google Scholar]
- Kralj, J.; Robnik-Sikonja, M.; Lavrac, N. NetSDM: Semantic Data Mining With Network Analysis. J. Mach. Learn. Res. 2019, 20, 1–50. [Google Scholar]
- Singh, S.; Vajirkar, P.; Lee, Y. Context-Based Data Mining Using Ontologies. In Proceedings of the International Conference on Conceptual Modeling, Chicago, IL, USA, 13–16 October 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 405–418. [Google Scholar]
- Matei, O.; Rusu, T.; Bozga, A.; Pop-Sitar, P.; Anton, C. Context-Aware Data Mining: Embedding External Data Sources in a Machine Learning Process. In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, Oviedo, Spain, 20–22 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 415–426. [Google Scholar]
- Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. Graph2vec: Learning Distributed Representations of Graphs. arXiv 2017, arXiv:1707.05005. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308. [Google Scholar]
- Grady, N.W. KDD Meets Big Data. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 1603–1608. [Google Scholar]
- Charest, M.; Delisle, S.; Cervantes, O.; Shen, Y. Bridging the Gap Between Data Mining and Decision Support: A Case-Based Reasoning and Ontology Approach. Intell. Data Anal. 2008, 12, 211–236. [Google Scholar] [CrossRef]
- Charest, M.; Delisle, S.; Cervantes, O.; Shen, Y. Intelligent Data Mining Assistance via CBR and Ontologies. In Proceedings of the 17th International Workshop on Database and Expert Systems Applications (DEXA’06), Krakow, Poland, 4–8 September 2006; pp. 593–597. [Google Scholar]
- Raedt, L.D. Declarative Modeling for Machine Learning and Data Mining. In Proceedings of the Formal Concept Analysis—10th International Conference ICFCA, Leuven, Belgium, 7–10 May 2012; Domenach, F., Ignatov, D.I., Poelmans, J., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2012; Volume 7278, p. 2-2. [Google Scholar] [CrossRef] [Green Version]
- Guns, T.; Dries, A.; Nijssen, S.; Tack, G.; De Raedt, L. MiningZinc: A Declarative Framework for Constraint-Based Mining. Artif. Intell. 2017, 244, 6–29. [Google Scholar] [CrossRef] [Green Version]
- Roth-Berghofer, T.R.; Richter, M.M. On Explanation. Künstl. Intell. 2008, 22, 5–7. [Google Scholar]
- Atzmueller, M.; Roth-Berghofer, T. The Mining and Analysis Continuum of Explaining Uncovered. In Proceedings of the 30th SGAI International Conference on Artificial Intelligence (AI-2010), Cambridge, UK, 14–16 December 2010. [Google Scholar]
- Schank, R.C. Explanation: A First Pass. In Experience, Memory, and Reasoning; Kolodner, J.L., Riesbeck, C.K., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1986; pp. 139–165. [Google Scholar]
- Goodman, B.; Flaxman, S. European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”. AI Mag. 2017, 38, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Gunning, D. Explainable Artificial Intelligence (XAI); Defense Advanced Research Projects Agency (DARPA): Arlington, VA, USA, 2017; Volume 2. [Google Scholar]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Donadello, I.; Serafini, L.; d’Avila Garcez, A.S. Logic Tensor Networks for Semantic Image Interpretation. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Costabello, L.; Lécué, F.; Giannotti, F.; Guidotti, R.; Minervini, P.; Hitzler, P.; Sarker, K. AAAI 2019 Tutorial on on Explainable AI: From Theory to Motivation, Applications and Limitations. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence Technical report, AAAI, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You: Explaining the Predictions of Any Classifier. In Proceedings of the ACM SIGKDD, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-Precision Model-Agnostic Explanations. In Proceedings of the AAAI Publications, Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. arXiv 2016, arXiv:1610.02391. [Google Scholar]
- Mujkanovic, F.; Doskoc, V.; Schirneck, M.; Schäfer, P.; Friedrich, T. timeXplain—A Framework for Explaining the Predictions of Time Series Classifiers. arXiv 2020, arXiv:2007.07606. [Google Scholar]
- Collaris, D.; van Wijk, J.J. ExplainExplore: Visual Exploration of Machine Learning Explanations. In Proceedings of the 2020 IEEE Pacific Visualization Symposium (PacificVis), Tianjin, China, 3–5 June 2020; pp. 26–35. [Google Scholar] [CrossRef]
- Fuji, M.; Morita, H.; Goto, K.; Maruhashi, K.; Anai, H.; Igata, N. Explainable AI Through Combination of Deep Tensor and Knowledge Graph. Fujitsu Sci. Tech. J. 2019, 55, 58–64. [Google Scholar]
- Zhang, W.; Paudel, B.; Zhang, W.; Bernstein, A.; Chen, H. Interaction Embeddings for Prediction and Explanation in Knowledge Graphs. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019. [Google Scholar]
- Lecue, F. On the Role of Knowledge Graphs in Explainable AI. Semant. Web 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Panigutti, C.; Perotti, A.; Pedreschi, D. Doctor XAI: An Ontology-Based Approach to Black-Box Sequential Data Classification Explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT), Barcelona, Spain, 27–30 January 2020; ACM: New York, NY, USA, 2020; pp. 629–639. [Google Scholar]
- Schmidt, A.; Atzmueller, M.; Hollender, M. Data Preparation for Big Data Analytics: Methods & Experiences. In Enterprise Big Data Engineering, Analytics, and Management; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big Data Preprocessing: Methods and Prospects. Big Data Anal. 2016, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, S.; Zarei, N.; Ragan, E.D. A Survey of Evaluation Methods and Measures for Interpretable Machine Learning. arXiv 2018, arXiv:1811.11839. [Google Scholar]
- Sokol, K.; Flach, P.A. Explainability Fact Sheets: A Framework for Systematic Assessment of Explainable Approaches. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020. [Google Scholar]
- Robnik-Šikonja, M.; Bohanec, M. Perturbation-Based Explanations of Prediction Models. In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent; Zhou, J., Chen, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–175. [Google Scholar] [CrossRef]
- Yeh, C.; Hsieh, C.; Suggala, A.S.; Inouye, D.I.; Ravikumar, P. How Sensitive are Sensitivity-Based Explanations? arXiv 2019, arXiv:1901.09392. [Google Scholar]
- Alvarez-Melis, D.; Jaakkola, T.S. On the Robustness of Interpretability Methods. arXiv 2018, arXiv:1806.08049. [Google Scholar]
- Zhang, Z.; Yang, F.; Wang, H.; Hu, X. Contextual Local Explanation for Black Box Classifiers. arXiv 2019, arXiv:1910.00768. [Google Scholar]
- Liu, N.; Shin, D.; Hu, X. Contextual Outlier Interpretation. arXiv 2017, arXiv:abs/1711.10589. [Google Scholar]
- Sokol, K.; Flach, P. One Explanation Does Not Fit All. KI Künstl. Intell. 2020, 34, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, G.; Raimond, Y. RDF 1.1 Primer. W3C Working Group Note, W3C. 2014. Available online: https://www.w3.org/TR/rdf11-primer/ (accessed on 13 April 2021).
- Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 Primer. W3C Recommendation, W3C. 2012. Available online: https://www.w3.org/TR/owl2-primer/ (accessed on 13 April 2021).
- Jennings, C.; Shelby, Z.; Arkko, J.; Keranen, A.; Bormann, C. Sensor Measurement Lists (SenML). Technical Report, IETF. 2018. Available online: https://tools.ietf.org/html/rfc8428 (accessed on 13 April 2021).
- Su, X.; Riekki, J.; Haverinen, J. Entity Notation: Enabling Knowledge Representations for Resource-Constrained Sensors. Pers. Ubiquitous Comput. 2012, 16, 819–834. [Google Scholar] [CrossRef]
- Su, X.; Riekki, J.; Nurminen, J.K.; Nieminen, J.; Koskimies, M. Adding Semantics to Internet of Things. Concurr. Comput. Pract. Exp. 2015, 27, 1844–1860. [Google Scholar] [CrossRef]
- Al-Osta, M.; Ahmed, B.; Gherbi, A. A Lightweight Semantic Web-Based Approach for Data Annotation on IoT Gateways. In Proceedings of the 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017)/the 7th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2017)/Affiliated Workshops, Lund, Sweden, 18–20 September 2017; Shakshuki, E.M., Ed.; Procedia Computer Science. Elsevier: Amsterdam, The Netherlands, 2017; Volume 113, pp. 186–193. [Google Scholar] [CrossRef]
- Su, X.; Zhang, H.; Riekki, J.; Keränen, A.; Nurminen, J.K.; Du, L. Connecting IoT Sensors to Knowledge-Based Systems by Transforming SenML to RDF. In Proceedings of the 5th International Conference on Ambient Systems, Networks and Technologies (ANT 2014), the 4th International Conference on Sustainable Energy Information Technology (SEIT-2014), Hasselt, Belgium, 2–5 June 2014; Shakshuki, E.M., Yasar, A., Eds.; Procedia Computer Science. Elsevier: Amsterdam, The Netherlands, 2014; Volume 32, pp. 215–222. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Ashish, N.; Sheth, A.P. The Internet of Things: A Survey From the Data-Centric Perspective. In Managing and Mining Sensor Data; Aggarwal, C.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 383–428. [Google Scholar] [CrossRef]
- Tagliolato, P.; Fugazza, C.; Oggioni, A.; Carrara, P. Semantic Profiles for Easing SensorML Description: Review and Proposal. ISPRS Int. J. Geo-Inf. 2019, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Jara, A.J.; Olivieri, A.C.; Bocchi, Y.; Jung, M.; Kastner, W.; Skarmeta, A.F. Semantic Web of Things: An Analysis of the Application Semantics for the IoT Moving Towards the IoT Convergence. Int. J. Web Grid Serv. 2014, 10, 244–272. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Y.; Yang, Y.; Zhang, C.; Zhu, X.; Ji, Y. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System. Sensors 2017, 17, 403. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, M.; Zimmermann, A. The Unified Code for Units of Measure in RDF: Cdt: Ucum and Other UCUM Datatypes. In ESWC (Satellite Events); Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11155, pp. 196–201. [Google Scholar] [CrossRef] [Green Version]
- Lefrançois, M.; Zimmermann, A. Custom Datatypes. Unofficial draft, École Nationale Supérieure des Mines de Saint-Étienne. 2020. Available online: https://ci.mines-stetienne.fr/lindt/v3/custom_datatypes (accessed on 14 April 2021).
- Compton, M.; Barnaghi, P.M.; Bermudez, L.; Garcia-Castro, R.; Corcho, Ó.; Cox, S.J.D.; Graybeal, J.; Hauswirth, M.; Henson, C.A.; Herzog, A.; et al. The SSN Ontology of the W3C Semantic Sensor Network Incubator Group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Janowicz, K.; Haller, A.; Cox, S.J.D.; Phuoc, D.L.; Lefrançois, M. SOSA: A Lightweight Ontology for Sensors, Observations, Samples, and Actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Edo, M.; Elsaleh, T.; Barnaghi, P.M.; Taylor, K. IoT-Lite: A Lightweight Semantic Model for the Internet of Things and Its Use With Dynamic Semantics. Pers. Ubiquitous Comput. 2017, 21, 475–487. [Google Scholar] [CrossRef]
- Radulovic, F.; Poveda-Villalón, M.; Vila-Suero, D.; Rodríguez-Doncel, V.; García-Castro, R.; Gómez-Pérez, A. Guidelines for Linked Data Generation and Publication: An Example in Building Energy Consumption. Autom. Constr. 2015, 57, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Quarati, A.; Clematis, A.; Roverelli, L.; Zereik, G.; D’Agostino, D.; Mosca, G.; Masnata, M. Integrating Heterogeneous Weather-Sensors Data Into a Smart-City App. In Proceedings of the 2017 International Conference on High Performance Computing & Simulation, HPCS 2017, Genoa, Italy, 17–21 July 2017; pp. 152–159. [Google Scholar] [CrossRef]
- Ramar, K.; Mohan, G.; Narayanasamy, P. Ontological Based Interoperability and Integration Framework for Heterogeneous Weather Systems. Rev. Téc. Ing. Univ. Zulia 2016, 39, 185–192. [Google Scholar]
- Shah, J.; Mishra, B. IoT Enabled Environmental Monitoring System for Smart Cities. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; pp. 383–388. [Google Scholar] [CrossRef]
- Roussey, C.; Bernard, S.; André, G.; Boffety, D. Weather Data Publication on the LOD Using SOSA/SSN Ontology. Semant. Web 2020, 11, 581–591. [Google Scholar] [CrossRef]
- Battle, R.; Kolas, D. Enabling the Geospatial Semantic Web With Parliament and GeoSPARQL. Semant. Web 2012, 3, 355–370. [Google Scholar] [CrossRef]
- Phuoc, D.L.; Nguyen-Mau, H.Q.; Parreira, J.X.; Hauswirth, M. A Middleware Framework for Scalable Management of Linked Streams. J. Web Semant. 2012, 16, 42–51. [Google Scholar] [CrossRef]
- Boronat, P.; Pérez-Francisco, M.; Calafate, C.T.; Cano, J. Towards a Sustainable City for Cyclists: Promoting Safety Through a Mobile Sensing Application. Sensors 2021, 21, 2116. [Google Scholar] [CrossRef]
- Bröring, A.; Remke, A.; Stasch, C.; Autermann, C.; Rieke, M.; Möllers, J. EnviroCar: A Citizen Science Platform for Analyzing and Mapping Crowd-Sourced Car Sensor Data. Trans. GIS 2015, 19, 362–376. [Google Scholar] [CrossRef]
- Miranda, J.; Ponce, P.; Molina, A.; Wright, P.K. Sensing, Smart and Sustainable Technologies for Agri-Food 4.0. Comput. Ind. 2019, 108, 21–36. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human Emotion Recognition: Review of Sensors and Methods. Sensors 2020, 20, 592. [Google Scholar] [CrossRef] [Green Version]
- Yadegaridehkordi, E.; Noor, N.F.B.M.; Ayub, M.N.B.; Affal, H.B.; Hussin, N.B. Affective Computing in Education: A Systematic Review and Future Research. Comput. Educ. 2019, 142, 103649. [Google Scholar] [CrossRef]
- Hosseini, A.; Buonocore, C.M.; Hashemzadeh, S.; Hojaiji, H.; Kalantarian, H.; Sideris, C.; Bui, A.A.T.; King, C.E.; Sarrafzadeh, M. Feasibility of a Secure Wireless Sensing Smartwatch Application for the Self-Management of Pediatric Asthma. Sensors 2017, 17, 1780. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI Beyond the Lab: Current Trends and Future Directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
- Politou, E.A.; Alepis, E.; Patsakis, C. A Survey on Mobile Affective Computing. Comput. Sci. Rev. 2017, 25, 79–100. [Google Scholar] [CrossRef]
- Kiaghadi, A.; Homayounfar, S.Z.; Gummeson, J.; Andrew, T.; Ganesan, D. Phyjama: Physiological Sensing via Fiber-Enhanced Pyjamas. In ACM Interactactive Mobile Wearable Ubiquitous Technologies; Association for Computing Machinery: New York, NY, USA, 2019; Volume 3, pp. 1–29. [Google Scholar] [CrossRef]
- Wicaksono, I.; Tucker, C.I.; Sun, T.; Guerrero, C.A.; Liu, C.; Woo, W.M.; Pence, E.J.; Dagdeviren, C. A Tailored, Electronic Textile Conformable Suit for Large-Scale Spatiotemporal Physiological Sensing in Vivo. NPJ Flex. Electron. 2020, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- van den Hoogen, J.; Bloemheuvel, S.; Atzmueller, M. The Di-Plast Data Science Toolkit – Enabling a Smart Data-Driven Digital Circular Economy for the Plastics Industry. In Proceedings of the Dutch-Belgian Database Day. Jheronimus Academy of Data Science, ’s-Hertogenbosch, The Netherlands, 11 December 2019. [Google Scholar]
- Liu, Q.; Liu, Z.; Xu, W.; Tang, Q.; Zhou, Z.; Pham, D.T. Human-Robot Collaboration in Disassembly for Sustainable Manufacturing. Int. J. Prod. Res. 2019, 57, 4027–4044. [Google Scholar] [CrossRef]
- Cimini, C.; Pirola, F.; Pinto, R.; Cavalieri, S. A Human-in-the-Loop Manufacturing Control Architecture for the Next Generation of Production Systems. J. Manuf. Syst. 2020, 54, 258–271. [Google Scholar] [CrossRef]
- Angelopoulos, A.; Michailidis, E.T.; Nomikos, N.; Trakadas, P.; Hatziefremidis, A.; Voliotis, S.; Zahariadis, T. Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects. Sensors 2020, 20, 109. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, X.; Freiheit, T.; Epureanu, B.I. Learning and Intelligence in Human-Cyber-Physical Systems: Framework and Perspective. In Proceedings of the 2020 Second International Conference on Transdisciplinary AI (TransAI), Irvine, CA, USA, 21–23 September 2020; pp. 142–145. [Google Scholar] [CrossRef]
- Mami, M.N.; Grangel-González, I.; Graux, D.; Elezi, E.; Lösch, F. Semantic Data Integration for the SMT Manufacturing Process Using SANSA Stack. In The Semantic Web: ESWC 2020 Satellite Events; Harth, A., Presutti, V., Troncy, R., Acosta, M., Polleres, A., Fernández, J.D., Xavier Parreira, J., Hartig, O., Hose, K., Cochez, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 307–311. [Google Scholar]
- Bader, S.R.; Grangel-Gonzalez, I.; Nanjappa, P.; Vidal, M.E.; Maleshkova, M. A Knowledge Graph for Industry 4.0. The Semantic Web; Harth, A., Kirrane, S., Ngonga Ngomo, A.C., Paulheim, H., Rula, A., Gentile, A.L., Haase, P., Cochez, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 465–480. [Google Scholar]
- Grangel-González, I.; Lösch, F.; ul Mehdi, A. Knowledge Graphs for Efficient Integration and Access of Manufacturing Data. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 93–100. [Google Scholar] [CrossRef]
- Patel, P.; Ali, M.I.; Sheth, A. From Raw Data to Smart Manufacturing: AI and Semantic Web of Things for Industry 4.0. IEEE Intell. Syst. 2018, 33, 79–86. [Google Scholar] [CrossRef]
- de Avila Belbute-Peres, F.; Smith, K.; Allen, K.; Tenenbaum, J.; Kolter, J.Z. End-to-End Differentiable Physics for Learning and Control. In Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Ma, T.; Barajas-Solano, D.A.; Tipireddy, R.; Tartakovsky, A.M. Physics-Informed Gaussian Process Regression for Probabilistic States Estimation and Forecasting in Power Grids. arXiv 2020, arXiv:2010.04591. [Google Scholar]
- Childs, C.M.; Washburn, N.R. Embedding Domain Knowledge for Machine Learning of Complex Material Systems. MRS Commun. 2019, 9, 806–820. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of Manufacturing Process Parameters Using Deep Neural Networks as Surrogate Models. Procedia CiRP 2018, 72, 426–431. [Google Scholar] [CrossRef]
- Zacarias, A.G.V.; Reimann, P.; Mitschang, B. A Framework to Guide the Selection and Configuration of Machine-Learning-Based Data Analytics Solutions in Manufacturing. Procedia CIRP 2018, 72, 153–158. [Google Scholar] [CrossRef]
- Zacarias, A.G.V.; Ghabri, R.; Reimann, P. AD4ML: Axiomatic Design to Specify Machine Learning Solutions for Manufacturing. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 148–155. [Google Scholar]
- Stewart, R.; Ermon, S. Label-Free Supervision of Neural Networks With Physics and Domain Knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Ringsquandl, M.; Lamparter, S.; Lepratti, R.; Kröger, P. Knowledge Fusion of Manufacturing Operations Data Using Representation Learning. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, APMS 2017: Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, Hamburg, Germany, 3–7 September 2017; Lödding, H., Riedel, R., Thoben, K.D., Kiritsis, D., von Cieminski, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 302–310. [Google Scholar] [CrossRef] [Green Version]
- Atzmueller, M.; Kloepper, B.; Mawla, H.A.; Jäschke, B.; Hollender, M.; Graube, M.; Arnu, D.; Schmidt, A.; Heinze, S.; Schorer, L.; et al. Big Data Analytics for Proactive Industrial Decision Support: Approaches & First Experiences in the Context of the FEE Project. Atp Ed. 2016, 58, 62–74. [Google Scholar]
- Duan, W.; Chiang, Y.Y. Building Knowledge Graph From Public Data for Predictive Analysis: A Case Study on Predicting Technology Future in Space and Time. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, San Francisco, WA, USA, 31 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 7–13. [Google Scholar] [CrossRef]
- Ringsquandl, M.; Kharlamov, E.; Stepanova, D.; Lamparter, S.; Lepratti, R.; Horrocks, I.; Kröger, P. On Event-Driven Knowledge Graph Completion in Digital Factories. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 1676–1681. [Google Scholar] [CrossRef]
- Banerjee, A.; Dalal, R.; Mittal, S.; Joshi, K.P. Generating Digital Twin Models Using Knowledge Graphs for Industrial Production Lines. In Proceedings of the 2017 ACM on Web Science Conference, WebSci ’17, Troy, NY, USA, 25–28 June 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 425–430. [Google Scholar] [CrossRef]
- Grangel-González, I.; Halilaj, L.; Vidal, M.E.; Lohmann, S.; Auer, S.; Müller, A.W. Seamless Integration of Cyber-Physical Systems in Knowledge Graphs. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 2000–2003. [Google Scholar] [CrossRef]
- Grangel-González, I.; Halilaj, L.; Vidal, M.E.; Rana, O.; Lohmann, S.; Auer, S.; Müller, A.W. Knowledge Graphs for Semantically Integrating Cyber-Physical Systems. In Database and Expert Systems Applications; Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 184–199. [Google Scholar]
- Szelążek, M.; Bobek, S.; Gonzalez-Pardo, A.; Nalepa, G.J. Towards the Modeling of the Hot Rolling Industrial Process. Preliminary Results. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Guimaraes, Portugal, 4–6 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 385–396. [Google Scholar]
- Cao, Q.; Samet, A.; Zanni-Merk, C.; de Bertrand de Beuvron, F.; Reich, C. Combining Chronicle Mining and Semantics for Predictive Maintenance in Manufacturing Processes. Semant. Web 2020, 11, 927–948. [Google Scholar] [CrossRef]
- Atzmueller, M.; Mollenhauer, D.; Schmidt, A. Big Data Analytics Using Local Exceptionality Detection. In Enterprise Big Data Engineering, Analytics, and Management; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- Atzmueller, M.; Hayat, N.; Schmidt, A.; Klöpper, B. Explanation-Aware Feature Selection Using Symbolic Time Series Abstraction: Approaches and Experiences in a Petro-Chemical Production Context. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017. [Google Scholar]
- Atzmueller, M.; Kloepper, B. Mining Attributed Interaction Networks on Industrial Event Logs. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Workshop on Methods for Interpretation of Industrial Event Logs, Madrid, Spain, 21–23 November 2018; Spriner: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Buchgeher, G.; Gabauer, D.; Martinez-Gil, J.; Ehrlinger, L. Knowledge Graphs in Manufacturing and Production: A Systematic Literature Review. arXiv 2020, arXiv:1903.12394. [Google Scholar]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K. Enhancing the Functionality of Augmented Reality Using Deep Learning, Semantic Web and Knowledge Graphs: A Review. Vis. Inform. 2020, 4, 32–42. [Google Scholar] [CrossRef]
- Atzmueller, M. Declarative Aspects in Explicative Data Mining for Computational Sensemaking. In Proceedings of the International Conference on Declarative Programming (DECLARE), Würzburg, Germany, 19–22 September 2017; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Schwenke, L.; Atzmueller, M. Show Me What You’re Looking For: Visualizing Abstracted Transformer Attention for Enhancing Their Local Interpretability on Time Series Data. In Proceedings of the 34th International Florida Artificial Intelligence Research Society Conference (FLAIRS-2021), Miami, FL, USA, 16–19 May 2021; FLAIRS/Florida Online Journals: North Miami Beach, FL, USA, 2021. [Google Scholar]
- Eagle, N.; Pentland, A.S. Reality Mining: Sensing Complex Social Systems. Pers. Ubiquitous Comput. 2006, 10, 255–268. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Abdelzaher, T. Social Sensing. In Managing and Mining Sensor Data; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–297. [Google Scholar]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Wang, D.; Szymanski, B.K.; Abdelzaher, T.; Ji, H.; Kaplan, L. The Age of Social Sensing. Computer 2019, 52, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Cattuto, C.; Benz, D.; Hotho, A.; Stumme, G. Semantic Grounding of Tag Relatedness in Social Bookmarking Systems. In Proceedings of the International Semantic Web Conference, Karlsruhe, Germany, 26–30 October 2008; Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5318, pp. 615–631. [Google Scholar]
- Kim, T.; McFee, E.; Olguin, D.O.; Waber, B.; Pentland, A.S. Sociometric Badges: Using Sensor Technology to Capture New Forms of Collaboration. J. Organ. Behav. 2012, 33, 412–427. [Google Scholar] [CrossRef]
- Atzmueller, M. Mining Social Media. Inform. Spektrum 2012, 35, 132–135. [Google Scholar] [CrossRef]
- Atzmueller, M. Mining Social Media: Key Players, Sentiments, and Communities. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 411–419. [Google Scholar] [CrossRef]
- Atzmueller, M.; Becker, M.; Doerfel, S.; Kibanov, M.; Hotho, A.; Macek, B.E.; Mitzlaff, F.; Mueller, J.; Scholz, C.; Stumme, G. Ubicon: Observing Social and Physical Activities. In Proceedings of the IEEE International Conference On Cyber, Physical and Social Computing (CPSCom 2012), Besancon, France, 20–23 November 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 317–324. [Google Scholar]
- Salathé, M.; Bengtsson, L.; Bodnar, T.J.; Brewer, D.D.; Brownstein, J.S.; Buckee, C.; Campbell, E.M.; Cattuto, C.; Khandelwal, S.; Mabry, P.L.; et al. Digital Epidemiology. PLoS Comput. Biol. 2012, 8, e1002616. [Google Scholar] [CrossRef] [Green Version]
- Atzmueller, M.; Benz, D.; Doerfel, S.; Hotho, A.; Jäschke, R.; Macek, B.E.; Mitzlaff, F.; Scholz, C.; Stumme, G. Enhancing Social Interactions at Conferences. IT Inf. Technol. 2011, 53, 101–107. [Google Scholar] [CrossRef]
- Atzmueller, M.; Becker, M.; Kibanov, M.; Scholz, C.; Doerfel, S.; Hotho, A.; Macek, B.E.; Mitzlaff, F.; Mueller, J.; Stumme, G. Ubicon and Its Applications for Ubiquitous Social Computing. New Rev. Hypermedia Multimed. 2014, 20, 53–77. [Google Scholar] [CrossRef]
- Gao, X.; Yu, W.; Rong, Y.; Zhang, S. Ontology-Based Social Media Analysis for Urban Planning. In Proceedings of the IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Torino, Italy, 4–8 July 2017; Volume 1, pp. 888–896. [Google Scholar]
- Espinoza-Arias, P.; Poveda-Villalón, M.; García-Castro, R.; Corcho, O. Ontological Representation of Smart City Data: From Devices to Cities. Appl. Sci. 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Sagar, S.; Lefrançois, M.; Rebaï, I.; Khemaja, M.; Garlatti, S.; Feki, J.; Médini, L. Modeling Smart Sensors on Top of SOSA/SSN and WoT TD With the Semantic Smart Sensor Network (S3N) Modular Ontology. In Proceedings of the Internal Semantic Web Conference, Crete, Greece, 3–7 June 2018; pp. 163–177. [Google Scholar]
- Mansour, E.; Chbeir, R.; Arnould, P. HSSN: An Ontology for Hybrid Semantic Sensor Networks. In Proceedings of the 23rd International Database Applications & Engineering Symposium, Athens, Greece, 10–12 June 2019; pp. 1–10. [Google Scholar]
- Jung, J.J.; Euzenat, J. Towards Semantic Social Networks. In Proceedings of the European Semantic Web Conference, Portorož, Slovenia, 28 May–1 June 2007; Springer: Berlin/Heidelberg, Germany; pp. 267–280. [Google Scholar]
- Erétéo, G.; Buffa, M.; Gandon, F.; Corby, O. Analysis of a Real Online Social Network Using Semantic Web Frameworks. In Proceedings of the International Semantic Web Conference, Chantilly, VA, USA, 25–29 October 2009; Springer: Berlin/Heidelberg, Germany; pp. 180–195. [Google Scholar]
- Van den Broeck, W.; Cattuto, C.; Barrat, A.; Szomszor, M.; Correndo, G.; Alani, H. The Live Social Semantics application: A platform for integrating face-to-face presence with on-line social networking. In Proceedings of the 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Lucca, Italy, 12–15 April 2010; pp. 226–231. [Google Scholar]
- Gloor, P.A.; Zhao, Y. Analyzing Actors and Their Discussion Topics by Semantic Social Network Analysis. In Proceedings of the Tenth International Conference on Information Visualisation (IV’06), London, UK, 5–7 July 2006; pp. 130–135. [Google Scholar]
- Woznowski, P.; King, R.; Harwin, W.; Craddock, I. A Human Activity Recognition Framework for Healthcare Applications: Ontology, Labelling Strategies, and Best Practice. In Proceedings of the International Conference on Internet of Things and Big Data, SCITEPRESS, Rome, Italy, 23–25 April 2016; Volume 2, pp. 369–377. [Google Scholar]
- Sheth, A. Computing for Human Experience: Semantics-Empowered Sensors, Services, and Social Computing on the Ubiquitous Web. IEEE Internet Comput. 2009, 14, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Sheth, A.; Anantharam, P.; Henson, C. Physical-Cyber-Social Computing: An Early 21st Century Approach. IEEE Intell. Syst. 2013, 28, 78–82. [Google Scholar] [CrossRef]
- Zempo, K.; Arai, T.; Aoki, T.; Okada, Y. Sensing Framework for the Internet of Actors in the Value Co-Creation Process with a Beacon-Attachable Indoor Positioning System. Sensors 2021, 21, 83. [Google Scholar] [CrossRef] [PubMed]
- Lederman, O.; Mohan, A.; Calacci, D.; Pentland, A.S. Rhythm: A Unified Measurement Platform for Human Organizations. IEEE MultiMedia 2018, 25, 26–38. [Google Scholar] [CrossRef]
- Atzmueller, M. Onto Collective Intelligence in Social Media: Exemplary Applications and Perspectives. In Proceedings of the International Workshop on Modeling Social Media (MSM 2012), Milwaukee, WI, USA, 25 June 2012; ACM Press: New York, NY, USA, 2012. [Google Scholar]
- Atzmueller, M. Data Mining on Social Interaction Networks. arXiv 2014, arXiv:1312.6675. [Google Scholar]
- Rashid, M.T.; Wang, D. CovidSens: A Vision on Reliable Social Sensing for COVID-19. Artif. Intell. Rev. 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, Y.; Wang, B.; Zang, J. Human–Cyber–Physical Systems (HCPSs) in the Context of New-Generation Intelligent Manufacturing. Engineering 2019, 5, 624–636. [Google Scholar] [CrossRef]
- Mitzlaff, F.; Benz, D.; Stumme, G.; Hotho, A. Visit Me, Click Me, Be My Friend: An Analysis of Evidence Networks of User Relationships in Bibsonomy. In Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, Toronto, ON, Canada, 13–16 June 2010; ACM: New York, NY, USA, 2010. [Google Scholar]
- Mitzlaff, F.; Atzmueller, M.; Benz, D.; Hotho, A.; Stumme, G. Community Assessment Using Evidence Networks. In Analysis of Social Media and Ubiquitous Data; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6904, pp. 79–98. [Google Scholar]
- Mitzlaff, F.; Atzmueller, M.; Stumme, G.; Hotho, A. Semantics of User Interaction in Social Media. In Complex Networks IV; Studies in Computational Intelligence; Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R., Eds.; Spriner: Berlin/Heidelberg, Germany, 2013; Volume 476. [Google Scholar] [CrossRef]
- Mitzlaff, F.; Atzmueller, M.; Benz, D.; Hotho, A.; Stumme, G. User-Relatedness and Community Structure in Social Interaction Networks. arXiv 2013, arXiv:1309.3888. [Google Scholar]
- Mitzlaff, F.; Atzmueller, M.; Hotho, A.; Stumme, G. The social distributional hypothesis: A pragmatic proxy for homophily in online social networks. Soc. Netw. Anal. Min. 2014, 4, 216. [Google Scholar] [CrossRef]
- Mitzlaff, F.; Atzmueller, M.; Benz, D.; Hotho, A.; Stumme, G. Community Assessment Using Evidence Networks. In Proceedings of the International Workshop on Mining Ubiquitous and Social Environments (MUSE2010), Toronto, ON, Canada, 13 June 2010. [Google Scholar]
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 66–75. [Google Scholar] [CrossRef]
- Weiser, M. Some Computer Science Issues in Ubiquitous Computing. Commun. ACM 1993, 36, 74–84. [Google Scholar] [CrossRef]
- Zhong, N.; Liu, J.; Yao, Y. In Search of the Wisdom Web. Computer 2002, 35, 27–31. [Google Scholar] [CrossRef]
- Hotho, A.; Stumme, G. Towards the Ubiquitous Web. Semant. Web 2010, 1, 117–119. [Google Scholar] [CrossRef]
- Knorr-Cetina, K. Sociality With Objects: Social Relations in Postsocial Knowledge Societies. Theory Cult. Soc. 1997, 14, 1–43. [Google Scholar] [CrossRef]
- Dimitrova, V.; Steiner, C.M.; Despotakis, D.; Brna, P.; Ascolese, A.; Pannese, L.; Albert, D. Semantic Social Sensing for Improving Simulation Environments for Learning. In Proceedings of the European Conference on Technology Enhanced Learning, Paphos, Cyprus, 17–21 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 601–602. [Google Scholar]
- Calbimonte, J.P.; Sarni, S.; Eberle, J.; Aberer, K. XGSN: An Open-Source Semantic Sensing Middleware for the Web of Things. In Proceedings of the International Semantic Web Conference, Trentino, Italy, 20 October 2014; pp. 51–66. [Google Scholar]
- Erétéo, G.; Limpens, F.; Gandon, F.; Corby, O.; Buffa, M.; Leitzelman, M.; Sander, P. Semantic social network analysis: A concrete case. In Handbook of Research on Methods and Techniques for Studying Virtual Communities: Paradigms and Phenomena; IGI Global: Hershey, PA, USA, 2011; pp. 122–156. [Google Scholar]
- Davoodi, E.; Kianmehr, K.; Afsharchi, M. A Semantic Social Network-Based Expert Recommender System. Appl. Intell. 2013, 39, 1–13. [Google Scholar] [CrossRef]
- Macek, B.E.; Atzmueller, M.; Stumme, G. Profile Mining in CVS-Logs and Face-to-Face Contacts for Recommending Software Developers. In Proceedings of the IEEE Third International Conference on Social Computing (SocialCom), Boston, MA, USA, 9–11 October 2011; IEEE Computer Society: Boston, MA, USA, 2011; pp. 250–257. [Google Scholar]
- Lee, R.; Wakamiya, S.; Sumiya, K. Discovery of Unusual Regional Social Activities Using Geo-Tagged Microblogs. World Wide Web 2011, 14, 321–349. [Google Scholar] [CrossRef]
- Scholz, C.; Atzmueller, M.; Barrat, A.; Cattuto, C.; Stumme, G. New Insights and Methods for Predicting Face-to-Face Contacts. In Proceedings of the 7th International AAAI Conference on Weblogs and Social Media, Cambridge, MA, USA, 8–11 July 2013; Kiciman, E., Ellison, N.B., Hogan, B., Resnick, P., Soboroff, I., Eds.; AAAI Press: Palo Alto, CA, USA, 2013. [Google Scholar]
- Kibanov, M.; Atzmueller, M.; Illig, J.; Scholz, C.; Barrat, A.; Cattuto, C.; Stumme, G. Is Web Content a Good Proxy for Real-Life Interaction? A Case Study Considering Online and Offline Interactions of Computer Scientists. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Paris, France, 25–28 August 2015; IEEE Press: Boston, MA, USA, 2015. [Google Scholar]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding Urban Human Activity and Mobility Patterns Using Large-Scale Location-Based Data From Online Social Media. In Proceedings of the International Workshop on Urban Computing, UrbComp ’13, Chicago, IL, USA, 11 August 2013; ACM: New York, NY, USA, 2013. [Google Scholar]
- Janowicz, K.; McKenzie, G.; Hu, Y.; Zhu, R.; Gao, S. Using Semantic Signatures for Social Sensing in Urban Environments. In Mobility Patterns, Big Data and Transport Analytics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31–54. [Google Scholar]
- Tonkin, E.L.; Woznowski, P.R. Activities of Daily Living Ontology for Ubiquitous Systems. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 573–578. [Google Scholar]
- Woznowski, P.R.; Tonkin, E.L.; Flach, P.A. Activities of Daily Living Ontology for Ubiquitous Systems: Development and Evaluation. Sensors 2018, 18, 2361. [Google Scholar] [CrossRef] [Green Version]
- Bennasar, M.; Price, B.A.; Stuart, A.; Gooch, D.; McCormick, C.; Mehta, V.; Clare, L.; Bennaceur, A.; Cohen, J.; Bandara, A.K.; et al. Knowledge-Based Architecture for Recognising Activities of Older People. Procedia Comput. Sci. 2019, 159, 590–599. [Google Scholar] [CrossRef]
- Baryannis, G.; Woznowski, P.; Antoniou, G. Rule-Based Real-Time Adl Recognition in a Smart Home Environment. In International Symposium on Rules and Rule Markup Languages for the Semantic Web; Springer: Berlin/Heidelberg, Germany, 2016; pp. 325–340. [Google Scholar]
- Atzmueller, M.; Hayat, N.; Trojahn, M.; Kroll, D. Explicative Human Activity Recognition Using Adaptive Association Rule-Based Classification. In Proceedings of the IEEE International Conference on Future IoT Technologies, Eger, Hungary, 18–19 January 2018; IEEE Press: Boston, MA, USA, 2018. [Google Scholar]
- Ahn, Y.Y.; Han, S.; Kwak, H.; Moon, S.; Jeong, H. Analysis of Topological Characteristics of Huge Online Social Networking Services. In Proceedings of the 16th International Conference On the World Wide Web (WWW), Banff, AB, Canada, 8–12 May 2007; ACM: New York, NY, USA, 2007; pp. 835–844. [Google Scholar]
- Mislove, A.; Marcon, M.; Gummadi, K.P.; Druschel, P.; Bhattacharjee, B. Measurement and Analysis of Online Social Networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24–26 October 2007; ACM: New York, NY, USA, 2007; pp. 29–42. [Google Scholar]
- Kwak, H.; Lee, C.; Park, H.; Moon, S. What Is Twitter, a Social Network or a News Media? In Proceedings of the 19th International Conference On World Wide Web (WWW), Raleigh, NC, USA, 26–30 April 2010; ACM: New York, NY, USA, 2010; pp. 591–600. [Google Scholar]
- Chelmis, C.; Wu, H.; Sorathia, V.; Prasanna, V.K. Semantic Social Network Analysis for the Enterprise. Comput. Inform. 2014, 33, 479–502. [Google Scholar]
- Gruber, T. Ontology of Folksonomy: A Mash-Up of Apples and Oranges. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2007, 3, 1–11. [Google Scholar] [CrossRef]
- Tang, J.; Leung, H.f.; Luo, Q.; Chen, D.; Gong, J. Towards Ontology Learning From Folksonomies. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 14–17 July 2009; Volume 9, pp. 2089–2094. [Google Scholar]
- Miyaki, T.; Rekimoto, J. Sensonomy: EnvisioningFolksonomic Urban Sensing. In UbiComp 2008 Workshop Programs; Citeseer: State College, PA, USA, 2008; pp. 187–190. [Google Scholar]
- Rekimoto, J. Sensonomy: Intelligence Penetrating Into the Real Space. In Proceedings of the 14th International Conference on Intelligent User Interfaces, Sanibel Island, FL, USA, 8–11 February 2009; pp. 3–4. [Google Scholar]
- Atzmueller, M.; Mueller, J.; Becker, M. Exploratory Subgroup Analytics on Ubiquitous Data. In Mining, Modeling and Recommending ‘Things’ in Social Media; Number 8940 in LNAI; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
Ref. | Sensing Framework | Semantic Formalism | Explainability | Domain |
---|---|---|---|---|
[91] | Custom | Simple taxonomy | Visual interface | Smart City |
[92] | Custom | Ontology | No | Smart City |
[94] | Custom | Ontology (SOSA, SSN) | Visual interface | Smart City |
[97] | Custom | Relational database | Visual interface | Traffic |
[98] | Custom | Ontology (O&M) | Visual interface | Traffic |
[99] | None | Out of the scope | Visual interface | Agri-food |
[100] | None | Out of the scope | No | Emotions |
[101] | None | Out of the scope | No | Education |
[102] | Custom | Relational database | Visual interface | e-Health |
[103] | None | Out of the scope | No | Fatigue detection |
[96] | LSM | Ontology (SSN) | Visual interface | cross-domain |
[84] | SWoT4CPS | Ontology (SSN), rules | No | cross-domain |
Reference | Sensing Framework | Semantic Formalism | Explainability | Domain |
---|---|---|---|---|
[113] | SANSA stack | Semantic Web | Visual interface | domain-specific (electronic mounting) |
[114,115] | I40KG framework | Ontologies | No | cross-domain |
[116] | SWeTI framework | Semantic Web | No | cross-domain |
[117,118,119] | None | Physics equations | No | domain-specific |
[120] | None | Physics approximation model | No | domain-specific |
[121,122,123] | Custom | Constraints | visualization dashboard, knowledge mediation | cross-domain |
[124,125,126] | Custom | knowledge graph | No | cross-domain |
[127,128,129,130] | None | knowledge graph | knowledge-graph extensions | cross-domain |
[131,132] | None | Rules | Shapely values | domain-specific |
[133,134,135] | None | knowledge graph | visual, symbolic, statistical | cross-domain |
Ref. | Sensing Framework | Semantic Formalism | Domain/Sensing |
---|---|---|---|
[91] | Custom | Ontology | Smart City |
[152,153] | Custom | Ontology | Smart City |
[154] | Custom | Ontology (SOSA, SSN) | IoT/Heterogeneous Sensors |
[155] | Custom | Ontology | IoT/Heterogeneous Sensors |
[156,157] | None | Ontology | Social Networks |
[150] | Custom | Folksonomy-Based | Social Network/Human Sensors |
[151] | Custom | Folksonomy-Based | Social/Human Sensors/IoT |
[144,158] | Custom | Folksonomy-Based | Social/Human Sensors |
[159] | None | Network-Based | Social/Textual/User-Generated Content |
[160] | Custom | Ontology | Healthcare |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalepa, G.J.; Bobek, S.; Kutt, K.; Atzmueller, M. Semantic Data Mining in Ubiquitous Sensing: A Survey. Sensors 2021, 21, 4322. https://doi.org/10.3390/s21134322
Nalepa GJ, Bobek S, Kutt K, Atzmueller M. Semantic Data Mining in Ubiquitous Sensing: A Survey. Sensors. 2021; 21(13):4322. https://doi.org/10.3390/s21134322
Chicago/Turabian StyleNalepa, Grzegorz J., Szymon Bobek, Krzysztof Kutt, and Martin Atzmueller. 2021. "Semantic Data Mining in Ubiquitous Sensing: A Survey" Sensors 21, no. 13: 4322. https://doi.org/10.3390/s21134322
APA StyleNalepa, G. J., Bobek, S., Kutt, K., & Atzmueller, M. (2021). Semantic Data Mining in Ubiquitous Sensing: A Survey. Sensors, 21(13), 4322. https://doi.org/10.3390/s21134322