Design of a Single-Layer ±45° Dual-Polarized Directional Array Antenna for Millimeter Wave Applications †
Abstract
:1. Introduction
2. Theoretical Analysis
3. ±45° Dual-Polarized Array Design
3.1. Array Design
3.2. Causes of Cross-Polarization Deterioration
3.3. Improvement of Polarization Purity
4. Fabrication and Measurement Results
4.1. Feeding Work Design
4.2. S-Parameters Measurement
4.3. Radiation Pattern Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iffat Naqvi, S.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef] [PubMed]
- Hoque, A.; Islam, M.T.; Almutairi, A.F. Low-profile slotted metamaterial antenna based on Bi slot microstrip patch for 5G application. Sensors 2020, 20, 3323. [Google Scholar] [CrossRef]
- Ali, I.; Jamaluddin, M.H.; Gaya, A.; Rahim, H.A. A dielectric resonator antenna with enhanced gain and bandwidth for 5G applications. Sensors 2020, 20, 675. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, M.A.; Ur-Rehman, M.; Frnda, J.; Althuwayb, A.A.; Nauman, A.; Cengiz, K. Dual band and dual diversity four-element MIMO dipole for 5G handsets. Sensors 2021, 21, 767. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y. Antenna-In-Package Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Wojnowski, M.; Lachner, R.; Böck, J.; Wagner, C.; Starzer, F.; Sommer, G.; Pressel, K.; Weigel, R. Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications. In Proceedings of the 2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, 7–9 December 2011; pp. 423–429. [Google Scholar]
- Chethan Kumar, Y.B.; Anil Kumar, K.V.; Rosales, R. TI mmWave Radar Sensor RF PCB Design, Manufacturing and Validation Guide. Available online: https://www.ti.com/lit/an/spracg5/spracg5.pdf (accessed on 6 May 2021).
- Jang, T.H.; Kim, H.Y.; Song, I.S.; Lee, C.J.; Lee, J.H.; Park, C.S. A wideband aperture efficient 60-GHz series-fed E-shaped patch antenna array with copolarized parasitic patches. IEEE Trans. Antennas Propag. 2016, 64, 5518–5521. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Zhang, H.; Wang, G.; Yu, Y.; Jiang, Z.H. An array antenna for both long-and medium-range 77 GHz automotive radar applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [Google Scholar] [CrossRef]
- Mishra, G.; Sharma, S.K.; Chieh, J.-C.S. A high gain series-fed circularly polarized traveling-wave antenna at W-band using a new butterfly radiating element. IEEE Trans. Antennas Propag. 2020, 68, 7947–7957. [Google Scholar] [CrossRef]
- Chen, X.-P.; Wu, K.; Han, L.; He, F. Low-cost high gain planar antenna array for 60-GHz band applications. IEEE Trans. Antennas Propag. 2010, 58, 2126–2129. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Hong, W.; Wu, K. 94 GHz substrate integrated monopulse antenna array. IEEE Trans. Antennas Propag. 2011, 60, 121–129. [Google Scholar] [CrossRef]
- Dewantari, A.; Kim, J.; Scherbatko, I.; Ka, M.-H. A sidelobe level reduction method for mm-Wave substrate integrated waveguide slot array antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1557–1561. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, J. An overview of the development of antenna-in-package technology for highly integrated wireless devices. Proc. IEEE 2019, 107, 2265–2280. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Zhang, Y. Microstrip grid and comb array antennas. IEEE Trans. Antennas Propag. 2011, 59, 4077–4084. [Google Scholar] [CrossRef]
- Bauer, F.; Wang, X.; Menzel, W.; Stelzer, A. A 79-GHz radar sensor in LTCC technology using grid array antennas. IEEE Trans. Microw. Theory Tech. 2013, 61, 2514–2521. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.P.; Liu, D.; Chua, K.M.; Wai, L.L. A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver. IEEE Trans. Antennas Propag. 2011, 59, 2134–2140. [Google Scholar] [CrossRef]
- Eiceg, V.; Sampath, H.; Catreux-Erceg, S. Dual-polarization versus single-polarization MIMO channel measurement results and modeling. IEEE Trans. Wirel. Commun. 2006, 5, 28–33. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Guo, Y.X. A Ka-band wideband dual-polarized magnetoelectric dipole antenna array on LTCC. IEEE Trans. Antennas Propag. 2019, 68, 4985–4990. [Google Scholar] [CrossRef]
- Li, P.-F.; Liao, S.; Xue, Q.; Qu, S.-W. 60 GHz dual-polarized high-gain planar aperture antenna array based on LTCC. IEEE Trans. Antennas Propag. 2019, 68, 2883–2894. [Google Scholar] [CrossRef]
- Dai, X.; Luk, K.-M. A wideband dual-polarized antenna for millimeter wave applications. IEEE Trans. Antennas Propag. 2020, 69, 2380–2385. [Google Scholar] [CrossRef]
- Park, S.; Okajima, Y.; Hirokawa, J.; Ando, M. A slotted post-wall waveguide array with interdigital structure for 45/spl deg/linear and dual polarization. IEEE Trans. Antennas Propag. 2005, 53, 2865–2871. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, S.; Luo, Q.; Wen, L.; Ban, Y.-L.; Yang, X.; Ren, X.; Wu, J. Dual-polarized crossed slot array antenna designed on a single laminate for millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 68, 4120–4125. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Li, J.-L. Differential-series-fed dual-polarized traveling-wave array for full-duplex applications. IEEE Trans. Antennas Propag. 2019, 68, 4097–4102. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, J.; Cai, Y.-M.; Wang, J.; Yin, Y. A wideband differentially fed dual-polarized stacked patch antenna with tuned slot excitations. IEEE Trans. Antennas Propag. 2018, 66, 2055–2060. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Sun, B.-H.; Guo, J.-L. A low-cost, single-layer, dual circularly polarized antenna for millimeter-wave applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 651–655. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Sun, B.-H.; Guo, J.-L. A single-layer wideband circularly polarized antenna for millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 68, 4925–4929. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Zhou, S.-G.; Dong, Y.-L. A single-layer ± 45° dual-polarized array antenna based on phase control approach. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 25–28 January 2021; pp. 245–246. [Google Scholar]
- Huang, J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans. Antennas Propag. 1986, 34, 1113–1124. [Google Scholar] [CrossRef]
- Liao, S.; Wu, P.; Shum, K.M.; Xue, Q. Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter-wave application. IEEE Trans. Antennas Propag. 2015, 63, 966–977. [Google Scholar] [CrossRef]
- Liao, S.; Xue, Q. Dual polarized planar aperture antenna on LTCC for 60-GHz antenna-in-package applications. IEEE Trans. Antennas Propag. 2016, 65, 63–70. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chu, T.-H. Design of a 60-GHz substrate integrated waveguide Butler matrix—A systematic approach. IEEE Trans. Microw. Theory Tech. 2010, 58, 1724–1733. [Google Scholar] [CrossRef]
Feeding Phase | −45° Linearly Polarized Wave | 45° Linearly Polarized Wave | ||||
---|---|---|---|---|---|---|
Port 1 | 0° | or | 0° | 0° | or | 0° |
Port 2 | 90° | 90° | −90° | −90° | ||
Port 3 | 180° | 180° | 180° | −180° | ||
Port 4 | −90° | 270° | 90° | −270° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Q.; Yang, Y.-H.; Zhou, S.-G.; Shao, C.; Zhou, D.; Sim, C.-Y.-D. Design of a Single-Layer ±45° Dual-Polarized Directional Array Antenna for Millimeter Wave Applications . Sensors 2021, 21, 4326. https://doi.org/10.3390/s21134326
Lv Q, Yang Y-H, Zhou S-G, Shao C, Zhou D, Sim C-Y-D. Design of a Single-Layer ±45° Dual-Polarized Directional Array Antenna for Millimeter Wave Applications . Sensors. 2021; 21(13):4326. https://doi.org/10.3390/s21134326
Chicago/Turabian StyleLv, Qinyi, Yu-Hang Yang, Shi-Gang Zhou, Chan Shao, Deyun Zhou, and Chow-Yen-Desmond Sim. 2021. "Design of a Single-Layer ±45° Dual-Polarized Directional Array Antenna for Millimeter Wave Applications " Sensors 21, no. 13: 4326. https://doi.org/10.3390/s21134326
APA StyleLv, Q., Yang, Y. -H., Zhou, S. -G., Shao, C., Zhou, D., & Sim, C. -Y. -D. (2021). Design of a Single-Layer ±45° Dual-Polarized Directional Array Antenna for Millimeter Wave Applications . Sensors, 21(13), 4326. https://doi.org/10.3390/s21134326