Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Exoskeleton
2.2. Assistance Control
- The training module is an offline process to setup the initial joint positions and velocities of the system. This module enables changing of the parameters used to calculate the trajectory references based on the evolution of the subject throughout the therapy but not during each trial.
- The active tracking module is a closed-loop position control for the exoskeleton linear actuators. In this regard, the under-actuated joints are driven depending on several factors: the trajectory references, the exoskeleton kinematics, and the assistance commands. This module enables the exoskeleton to track the reference by ensuring smooth and precise positioning.
- The assistance module is an open-loop assistance control based on an ANN-Fuzzy model that adjusts the output velocity by modulating the reference according to the subject muscular effort detected by the EMG signals. This module enables the dynamic assistance to the subject in order to counterbalance any muscular effort.
2.3. Training Module
2.4. Active Tracking-Motion Module
Algorithm 1 Active tracking control |
Require: : EMG vector; : velocity reference; : joint angles. |
1: Calculate and . |
2: Calculate = −. |
3: if then |
4: ; go to 1. |
5: else |
6: |
7: end if |
8: if Motion direction change then |
9: Update and . If the intention is motion 1, , otherwise, . |
10: end if |
11: go to 1. |
2.5. Assistance Module
- Case a: All the outputs of the classifier indicate that there is not membership to the levels.
- Case k: Entries 1 and 3 show transition to extreme levels of muscle condition.
- Case l: Input 1 indicates level transition, input 2 indicates non-belonging, and 3 indicates belonging. With this sequence, there is no operating logic, since if input 1 shows a level change, the level that would follow is the second, but not the third.
- Case n: All inputs indicate a transition and it is not possible to know the direction of the transition.
- Cases u and x: Entries 1 and 3 show belonging to extreme levels of muscle condition.
- Case aa: All outputs of the classifier indicate that there is a membership to the levels.
3. Results and Discussion
3.1. Hardware and Control System Implementation
3.2. Experimental Protocol
3.3. System Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Case | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | |||||||||||||
b | |||||||||||||
c | |||||||||||||
d | |||||||||||||
e | |||||||||||||
f | |||||||||||||
g | |||||||||||||
h | |||||||||||||
i | |||||||||||||
j | |||||||||||||
k | |||||||||||||
l | |||||||||||||
m | |||||||||||||
n | |||||||||||||
o | |||||||||||||
p | |||||||||||||
q | |||||||||||||
r | |||||||||||||
s | |||||||||||||
t | |||||||||||||
u | |||||||||||||
v | |||||||||||||
w | |||||||||||||
x | |||||||||||||
y | |||||||||||||
z | |||||||||||||
aa |
References
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Kim, Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174. [Google Scholar] [CrossRef] [PubMed]
- Turolla, A. An Overall Framework for Neurorehabilitation Robotics: Implications for Recovery; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 15–27. [Google Scholar] [CrossRef]
- Lambercy, O.; Ranzani, R.; Gassert, R. Robot-assisted rehabilitation of hand function. In Rehabilitation Robotics; Elsevier: Amsterdam, The Netherlands, 2018; Volume 23, Chapter 15; pp. 205–225. [Google Scholar] [CrossRef]
- Lambercy, O.; Lünenburger, L.; Gassert, R.; Bolliger, M. Robots for Measurement/Clinical Assessment. In Neurorehabilitation Technology; Springer: London, UK, 2012; pp. 443–456. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, X.; Wang, J. Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav. Neurol. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Bos, R.A.; Haarman, C.J.; Stortelder, T.; Nizamis, K.; Herder, J.L.; Stienen, A.H.; Plettenburg, D.H. A structured overview of trends and technologies used in dynamic hand orthoses. J. Neuroeng. Rehabil. 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troncossi, M.; Mozaffari-foumashi, M.; Parenti-castelli, V. An Original Classification of Rehabilitation Hand Exoskeletons. J. Robot. Mech. Eng. Res. 2016, 1. [Google Scholar] [CrossRef]
- Surakijboworn, M.; Wannasuphoprasit, W. Design of a Novel Finger Exoskeleton with a Sliding Six-bar Joint Mechanism. In Proceedings of the 6th Augmented Human International Conference, Singapore, 9–11 March 2015; Volume 1, pp. 77–80. [Google Scholar] [CrossRef]
- Taheri, H.; Rowe, J.B.; Gardner, D.; Chan, V.; Gray, K.; Bower, C.; Reinkensmeyer, D.J.; Wolbrecht, E.T. Design and preliminary evaluation of the FINGER rehabilitation robot: Controlling challenge and quantifying finger individuation during musical computer game play. J. Neuroeng. Rehabil. 2014, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susanto, E.A.; Tong, R.K.; Ockenfeld, C.; Ho, N.S. Efficacy of robot-assisted fingers training in chronic stroke survivors: A pilot randomized-controlled trial. J. Neuroeng. Rehabil. 2015, 12, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arata, J.; Ohmoto, K.; Gassert, R.; Lambercy, O.; Fujimoto, H.; Wada, I. A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3902–3907. [Google Scholar] [CrossRef]
- Agarwal, P.; Fernandez, B.R.; Deshpande, A.D. Assist-as-Needed Controllers for Index Finger Module of a Hand Exoskeleton for Rehabilitation. In Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Columbus, OH, USA, 28–30 October 2015; p. V003T42A002. [Google Scholar] [CrossRef]
- Agarwal, P.; Deshpande, A.D. Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 85–90. [Google Scholar] [CrossRef]
- Anam, K.; Al-Jumaily, A.A. Active exoskeleton control systems: State of the art. Procedia Eng. 2012, 41, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Gopura, R.A.; Bandara, D.S.; Kiguchi, K.; Mann, G.K. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob. Auton. Syst. 2016, 75, 203–220. [Google Scholar] [CrossRef]
- Cui, L.; Phan, A.; Allison, G. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; Volume 2015-Novem, pp. 4627–4630. [Google Scholar] [CrossRef]
- Basteris, A.; Nijenhuis, S.M.; Stienen, A.H.A.; Buurke, J.H.; Prange, G.B.; Amirabdollahian, F. Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review. J. Neuroeng. Rehabil. 2014, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmichael, M.G. A Musculoskeletal Model-based Assistance-As-Needed Paradigm for Assistive Robotics. Ph.D. Thesis, University of Technology Sydney, Sydney, Australia, 2013. [Google Scholar]
- Agarwal, P.; Deshpande, A.D. Subject-Specific Assist-as-Needed Controllers for a Hand Exoskeleton for Rehabilitation. IEEE Robot. Autom. Lett. 2018, 3, 508–515. [Google Scholar] [CrossRef]
- Teramae, T.; Noda, T.; Morimoto, J. EMG-based model predictive control for physical human–robot interaction: Application for assist-as-needed control. IEEE Robot. Autom. Lett. 2017, 3, 210–217. [Google Scholar] [CrossRef]
- Peternel, L.; Noda, T.; Petrič, T.; Ude, A.; Morimoto, J.; Babič, J. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation. PLoS ONE 2016, 11, e0148942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiguchi, K.; Hayashi, Y. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2012, 42, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, C.K.; Kim, K.G. An EMG-based variable impedance control for elbow exercise: Preliminary study. Adv. Robot. 2017, 31, 809–820. [Google Scholar] [CrossRef]
- Meattini, R.; Chiaravalli, D.; Palli, G.; Melchiorri, C. sEMG-Based Human-in-the-Loop Control of Elbow Assistive Robots for Physical Tasks and Muscle Strength Training. IEEE Robot. Autom. Lett. 2020, 5, 5795–5802. [Google Scholar] [CrossRef]
- Castiblanco, J.C.; Ortmann, S.; Mondragon, I.F.; Alvarado-Rojas, C.; Jöbges, M.; Colorado, J.D. Myoelectric pattern recognition of hand motions for stroke rehabilitation. Biomed. Signal Process. Control 2020, 57. [Google Scholar] [CrossRef]
- Arteaga, M.V.; Castiblanco, J.C.; Mondragon, I.F.; Colorado, J.D.; Alvarado-Rojas, C. EMG-based adaptive trajectory generation for an exoskeleton model during hand rehabilitation exercises. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 416–421. [Google Scholar] [CrossRef]
- Castiblanco, J.C.; Arteaga, M.V.; Mondragon, I.F.; Ortmann, S.; Alvarado-Rojas, C.; Colorado, J.D. Velocity modulation assistance for stroke rehabilitation based on EMG muscular condition. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 509–514. [Google Scholar] [CrossRef]
Join | Frame | a | q | d | |
---|---|---|---|---|---|
CMC flexion-extension | 1 | 0 | 0 | ||
CMC abduction-adduction | 2 | 0 | 0 | ||
MPC abduction-adduction | 3 | 0 | 0 | ||
MPC flexion-extension | 4 | 0 | 0 | ||
PIP flexion-extension | 5 | 0 | 0 | ||
DIP flexion-extension | 6 | 0 | 0 |
Case | In1 | In2 | In3 | Case | In1 | In2 | In3 | Case | In1 | In2 | In3 |
---|---|---|---|---|---|---|---|---|---|---|---|
a | j | s | |||||||||
b | k | t | |||||||||
c | l | u | |||||||||
d | m | v | |||||||||
e | n | w | |||||||||
f | o | x | |||||||||
g | p | y | |||||||||
h | q | z | |||||||||
i | r | aa |
Level | Subject | II | III | IV | V | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCP | PIP | DIP | MCP | PIP | DIP | MCP | PIP | DIP | MCP | PIP | DIP | ||
1 | 1 | 0.03 | 0.055 | 0.099 | 0.028 | 0.051 | 0.109 | 0.03 | 0.043 | 0.099 | 0.031 | 0.062 | 0.123 |
2 | 0.032 | 0.044 | 0.055 | 0.032 | 0.051 | 0.083 | 0.033 | 0.046 | 0.078 | 0.032 | 0.052 | 0.088 | |
3 | 0.096 | 0.146 | 0.237 | 0.092 | 0.08 | 0.086 | 0.034 | 0.054 | 0.075 | 0.032 | 0.052 | 0.088 | |
2 | 1 | 0.031 | 0.042 | 0.089 | 0.034 | 0.054 | 0.098 | 0.03 | 0.06 | 0.108 | 0.03 | 0.058 | 0.126 |
2 | 0.035 | 0.057 | 0.121 | 0.039 | 0.06 | 0.089 | 0.031 | 0.042 | 0.082 | 0.032 | 0.053 | 0.088 | |
3 | 0.031 | 0.058 | 0.094 | 0.037 | 0.055 | 0.082 | 0.031 | 0.05 | 0.069 | 0.033 | 0.063 | 0.101 | |
3 | 1 | 0.03 | 0.044 | 0.104 | 0.04 | 0.057 | 0.095 | 0.036 | 0.065 | 0.093 | 0.038 | 0.076 | 0.133 |
2 | 0.037 | 0.053 | 0.084 | 0.032 | 0.058 | 0.13 | 0.031 | 0.046 | 0.082 | 0.032 | 0.057 | 0.088 | |
3 | 0.035 | 0.06 | 0.085 | 0.031 | 0.061 | 0.114 | 0.033 | 0.051 | 0.106 | 0.031 | 0.053 | 0.088 | |
Patients | 1 | 0.033 | 0.056 | 0.081 | 0.032 | 0.058 | 0.1 | 0.032 | 0.045 | 0.073 | 0.028 | 0.054 | 0.094 |
2 | 0.033 | 0.068 | 0.14 | 0.031 | 0.058 | 0.097 | 0.029 | 0.045 | 0.088 | 0.031 | 0.056 | 0.11 | |
3 | 0.064 | 0.067 | 0.106 | 0.033 | 0.06 | 0.088 | 0.029 | 0.041 | 0.075 | 0.03 | 0.06 | 0.114 | |
4 | 0.033 | 0.057 | 0.091 | 0.034 | 0.066 | 0.123 | 0.031 | 0.049 | 0.068 | 0.036 | 0.066 | 0.104 | |
5 | 0.03 | 0.049 | 0.087 | 0.035 | 0.053 | 0.089 | 0.027 | 0.039 | 0.076 | 0.028 | 0.056 | 0.104 | |
6 | 0.03 | 0.048 | 0.073 | 0.033 | 0.056 | 0.08 | 0.03 | 0.039 | 0.053 | 0.036 | 0.072 | 0.132 | |
7 | 0.032 | 0.047 | 0.076 | 0.034 | 0.048 | 0.081 | 0.031 | 0.036 | 0.047 | 0.032 | 0.046 | 0.094 | |
8 | 0.048 | 0.053 | 0.071 | 0.033 | 0.058 | 0.093 | 0.031 | 0.039 | 0.059 | 0.032 | 0.057 | 0.115 | |
9 | 0.035 | 0.049 | 0.053 | 0.032 | 0.05 | 0.1 | 0.031 | 0.04 | 0.059 | 0.032 | 0.057 | 0.115 | |
10 | 0.033 | 0.06 | 0.093 | 0.037 | 0.052 | 0.081 | 0.03 | 0.044 | 0.059 | 0.032 | 0.057 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castiblanco, J.C.; Mondragon, I.F.; Alvarado-Rojas, C.; Colorado, J.D. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection. Sensors 2021, 21, 4372. https://doi.org/10.3390/s21134372
Castiblanco JC, Mondragon IF, Alvarado-Rojas C, Colorado JD. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection. Sensors. 2021; 21(13):4372. https://doi.org/10.3390/s21134372
Chicago/Turabian StyleCastiblanco, Jenny Carolina, Ivan Fernando Mondragon, Catalina Alvarado-Rojas, and Julian D. Colorado. 2021. "Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection" Sensors 21, no. 13: 4372. https://doi.org/10.3390/s21134372
APA StyleCastiblanco, J. C., Mondragon, I. F., Alvarado-Rojas, C., & Colorado, J. D. (2021). Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection. Sensors, 21(13), 4372. https://doi.org/10.3390/s21134372