Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Label-Free Manner Using Micromechanical Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microcantilever Chips
2.2. Probe Immobilization
2.3. DNA Hybridization
2.4. Measurement and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.-R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res. 2020, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.-Y.; Jian, S.W.; Liu, D.P.; Ng, T.C.; Huang, W.T.; Lin, H.H. High transmissibility of COVID-19 near symptom onset. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mahase, E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ Br. Med. J. 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Coronavirus Disease (COVID-19) Pandemic. 7 March 2021. Available online: https://covid19.who.int/ (accessed on 8 February 2021).
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, E.; Cervantes, V. COVID-19, a worldwide public health emergency. Rev. Clin. Esp. 2020. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, X.; Liu, X.; Ou, H.; Zhang, H.; Wang, J.; Li, Q.; Cheng, H.; Zhang, W.; Luo, Z. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. 2020, 56, 10235–10238. [Google Scholar] [CrossRef] [PubMed]
- Smyrlaki, I.; Ekman, M.; Lentini, A.; de Sousa, N.R.; Papanicolaou, N.; Vondracek, M.; Aarum, J.; Safari, H.; Muradrasoli, S.; Rothfuchs, A.G.; et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat. Commun. 2020, 11, 4812. [Google Scholar] [CrossRef] [PubMed]
- Lalli, M.A.; Langmade, J.S.; Chen, X.; Fronick, C.C.; Sawyer, C.S.; Burcea, L.C.; Wilkinson, M.N.; Fulton, R.S.; Heinz, M.; Buchser, W.J.; et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clin. Chem. 2021, 67, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.K.; Sivalingam, S.P.; Yap, E.P.H. Rapid direct nucleic acid amplification test without RNA extraction for SARS-CoV-2 using a portable PCR thermocycler. Genes 2020, 11, 664. [Google Scholar] [CrossRef]
- Byrnes, S.A.; Gallagher, R.; Steadman, A.; Bennett, C.; Rivera, R.; Ortega, C.; Motley, S.T.; Jain, P.; Weigl, B.H.; Connelly, J.T. Multiplexed and extraction-free amplification for simplified SARS-CoV-2 RT-PCR tests. Anal. Chem. 2021, 93, 4160–4165. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.G.; Besednova, N.N.; Romashko, R.V.; Zaporozhets, T.S.; Efimov, T.A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends. Biosensors 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Rotake, D.; Darji, A.; Kale, N. Fabrication, calibration, and preliminary testing of microcantilever-based piezoresistive sensor for BioMEMS applications. IET Nanobiotechnology 2020, 14, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Alodhayb, A.; Brown, N.; Saydur Rahman, S.M.; Harrigan, R.; Beaulieu, L.Y. Towards detecting the human immunodeficiency virus using microcantilever sensors. Appl. Phys. Lett. 2013, 102, 173106. [Google Scholar] [CrossRef]
- Timurdogan, E.; Alaca, B.E.; Kavakli, I.H.; Urey, H. MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosens. Bioelectron. 2011, 28, 189–194. [Google Scholar] [CrossRef]
- Cha, B.H.; Alaca, B.E.; Kavakli, I.H.; Urey, H. Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron. 2009, 25, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Huang, C.W.; Lin, T.H.; Lin, C.T.; Chen, L.G.; Hsiao, P.Y.; Wu, B.R.; Hsueh, H.T.; Kuo, B.J.; Tsai, H.H.; et al. A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Velanki, S.; Ji, H.-F. Detection of feline coronavirus using microcantilever sensors. Meas. Sci. Technol. 2006, 17, 2964. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.; Lechuga, L.M. Microcantilever-based platforms as biosensing tools. Analyst 2010, 135, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Ilic, B.; Craighead, H.G.; Krylov, S.; Senaratne, W.; Ober, C.; Neuzil, P. Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 2004, 95, 3694–3703. [Google Scholar] [CrossRef]
- Al-Gawati, M.A.; Alhazaa, A.; Albrithen, H.; Alnofiay, J.; Alodhayb, A. Effect of surface patterning using femtosecond laser on micromechanical and structural properties of micromechanical sensors. Mater. Res. Express 2020, 7, 085904. [Google Scholar] [CrossRef]
- Koev, S.T.; Powers, M.A.; Yi, H.; Wu, L.Q.; Bentley, W.E.; Rubloff, G.W.; Payne, G.F.; Ghodssi, R. Mechano-transduction of DNA hybridization and dopamine oxidation through electrodeposited chitosan network. Lab Chip 2007, 7, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 2004, 75, 2229–2253. [Google Scholar] [CrossRef]
- Kim, S.; Yi, D.; Passian, A.; Thundat, T. Observation of an anomalous mass effect in microcantilever-based biosensing caused by adsorbed DNA. Appl. Phys. Lett. 2010, 96, 153703. [Google Scholar] [CrossRef]
- Sone, H.; Fujinuma, Y.; Hosaka, S. Picogram mass sensor using resonance frequency shift of cantilever. Jpn. J. Appl. Phys. 2004, 43, 3648. [Google Scholar] [CrossRef]
- Nuryadi, R.; Djajadi, A.; Adiel, R.; Aprilia, L.; Aisah, N. Resonance frequency change in microcantilever-based sensor due to humidity variation. In Materials Science Forum; Trans Tech Publications: Bäch, Switzerland, 2013. [Google Scholar]
- Johnson, B.N.; Mutharasan, R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens. Bioelectron. 2012, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Wu, P.; Li, L.; Huang, Q.; Wang, J.; Zhang, D.; Li, M.; Chen, N.; Wang, X. Ultrasensitive isothermal detection of a plant pathogen by using a gold nanoparticle-enhanced microcantilever sensor. Sens. Actuators B Chem. 2021, 338, 129874. [Google Scholar] [CrossRef]
Oligonucleotide | Sequence and End Modifications | Concentration |
---|---|---|
Probe | 5′-/5ThioMC6-D/CAA CTG GAA CCT CAT CAG GAG ATG CCA CAA CTG CTT ATG CTA ATA TGC T-3′ | 1 μM (15.4 μg mL−1) |
Complementary target | 5′-/5ThioMC6-D/AGC ATA TTA GCA TAA GCA GTT GTG GCA TCT CCT GAT GAG GTT CCA GTT G-3′ | 0.3 μM (4.62 μg mL−1) |
Partial complementary target | 5′-/5ThioMC6-D/GTA CTG GCA GAT TAA GCA GTT GTG GCA TCT CCT GAT TAC CGT AAC AGG G-3′ | 0.3 μM (4.62 μg mL−1) |
Noncomplementary target | 5′-/5ThioMC6-D/GGG TAT CGG TCT ACC TTA TCA AAG ACA TCA AGC TGC AAT GCA CGA TCG-3′ | 0.3 μM (4.62 μg mL−1) |
Oligonucleotide | Sequence and End Modifications | Concentration |
---|---|---|
Probe | 5′-/5ThioMC6-D/CAA CTG GAA CCT CAT CAG GAG ATG CCA CAA CTG CTT ATG CTA ATA TGC T-3′ | 1 μM (15.4 μg mL−1) |
Complementary target | 5′-/5ThioMC6-D/AGC ATA TTA GCA TAA GCA GTT GTG GCA TCT CCT GAT GAG GTT CCA GTT G-3′ | 0.9 μM (13. 8μg mL−1) |
Complementary target | 5′-/5ThioMC6-D/AGC ATA TTA GCA TAA GCA GTT GTG GCA TCT CCT GAT GAG GTT CCA GTT G-3′ | 0.3 μM (4.62 μg mL−1) |
Complementary target | 5′-/5ThioMC6-D/AGC ATA TTA GCA TAA GCA GTT GTG GCA TCT CCT GAT GAG GTT CCA GTT G-3′ | 90 nM (1.38 μg mL−1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloraini, D.A.; Almuqrin, A.H.; Alanazi, A.; Ain, Q.T.; Alodhayb, A.N. Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Label-Free Manner Using Micromechanical Sensors. Sensors 2021, 21, 4439. https://doi.org/10.3390/s21134439
Aloraini DA, Almuqrin AH, Alanazi A, Ain QT, Alodhayb AN. Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Label-Free Manner Using Micromechanical Sensors. Sensors. 2021; 21(13):4439. https://doi.org/10.3390/s21134439
Chicago/Turabian StyleAloraini, Dalal A., Aljawhara H. Almuqrin, Amal Alanazi, Qura Tul Ain, and Abdullah N. Alodhayb. 2021. "Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Label-Free Manner Using Micromechanical Sensors" Sensors 21, no. 13: 4439. https://doi.org/10.3390/s21134439
APA StyleAloraini, D. A., Almuqrin, A. H., Alanazi, A., Ain, Q. T., & Alodhayb, A. N. (2021). Rapid and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Label-Free Manner Using Micromechanical Sensors. Sensors, 21(13), 4439. https://doi.org/10.3390/s21134439