On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range
Abstract
:1. Introduction
2. The Photoacoustic Detection of SO2 Gas Emissions
2.1. Basics of the Photoacoustic SO2 Gas Detection
2.2. The Photoacoustic Sensor System
2.3. Sensor Signal Analysis
3. SO2 Laboratory Measurements
4. Field Test
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMO MARPOL. MARPOL 73/79: Regulations for the Prevention of Air Pollution from Ships and NOx Technical Code; IMO: London, UK, 1998. [Google Scholar]
- IMO MARPOL. MARPOL Annex VI: Regulations for the Prevention of Air Pollution from Ships; Consolidated Edition; IMO: London, UK, 2006. [Google Scholar]
- SICK AG. CEMS Solutions: MARSIC300. Available online: https://www.sick.com/de/en/analyzer-solutions/cems-solutions/marsic300/c/g330151 (accessed on 21 June 2021).
- Gasera Ltd. Gasera One. Available online: http://www.gasera.fi/product/gaseraone/ (accessed on 21 June 2021).
- Bozóki, Z.; Pogány, A.; Szabó, G. Photoacoustic Instruments for Practical Applications: Present, Potentials, and Future Challenges. Appl. Spectrosc. Rev. 2011, 46, 1–37. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef] [PubMed]
- Knobelspies, S.; Bierer, B.; Perez, A.O.; Wöllenstein, J.; Kneer, J.; Palzer, S. Low-cost gas sensing system for the reliable and precise measurement of methane, carbon dioxide and hydrogen sulfide in natural gas and biomethane. Sens. Actuators B Chem. 2016, 236, 885–892. [Google Scholar] [CrossRef]
- Dong, M.; Zheng, C.; Miao, S.; Zhang, Y.; Du, Q.; Wang, Y.; Tittel, F.K. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection. Sensors 2017, 17, 2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Su, G.; Yuan, H. In situ gas filter correlation: Photoacoustic CO detection method for fire warning. Sens. Actuators B Chem. 2005, 109, 233–237. [Google Scholar] [CrossRef]
- Scholz, L.; Perez, A.O.; Bierer, B.; Eaksen, P.; Wollenstein, J.; Palzer, S. Miniature Low-Cost Carbon Dioxide Sensor for Mobile Devices. IEEE Sens. J. 2017, 17, 2889–2895. [Google Scholar] [CrossRef]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wöllenstein, J.; Palzer, S. A Wireless Gas Sensor Network to Monitor Indoor Environmental Quality in Schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierer, B.; Nägele, H.-J.; Perez, A.O.; Wöllenstein, J.; Kress, P.; Lemmer, A.; Palzer, S. Real-Time Gas Quality Data for On-Demand Production of Biogas. Chem. Eng. Technol. 2018, 41, 696–701. [Google Scholar] [CrossRef]
- Wittstock, V.; Scholz, L.; Bierer, B.; Perez, A.O.; Wöllenstein, J.; Palzer, S. Design of a LED-based sensor for monitoring the lower explosion limit of methane. Sensors Actuators B Chem. 2017, 247, 930–939. [Google Scholar] [CrossRef]
- Scholz, L.; Palzer, S. Photoacoustic-based detector for infrared laser spectroscopy. Appl. Phys. Lett. 2016, 109, 041102. [Google Scholar] [CrossRef]
- Uotila, J. Comparison of infrared sources for a differential photoacoustic gas detection system. Infrared Phys. Technol. 2007, 51, 122–130. [Google Scholar] [CrossRef]
- El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Willing, B.; Wöllenstein, J. Resonant Photoacoustic Gas Monitoring of Combustion Emissions. Proceedings 2018, 2, 962. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Wu, H.; Dong, L.; Li, B.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption–Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser. ACS Sens. 2020, 5, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Somesfalean, G.; Zhang, Z.G.; Sjöholm, M.; Svanberg, S. All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection. Appl. Phys. A 2005, 80, 1021–1025. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, S.; Tittel, F.K. Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm. Opt. Express 2017, 25, 32581–32590. [Google Scholar] [CrossRef]
- Briggs, J.P.; Caton, R.B.; Smith, M.J. Phosphorescence Lifetime of S02 in the ã3B1 State at Low Pressure. Can. J. Chem. 1975, 53, 2133–2139. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.H. On the Absorption Spectrum of Sulphur Dioxide. Phys. Rev. 1935, 47, 224–232. [Google Scholar] [CrossRef]
- Hoy, A.; Brand, J. Asymmetric structure and force field of the 1B2(1A′) state of sulphur dioxide. Mol. Phys. 1978, 36, 1409–1420. [Google Scholar] [CrossRef]
- Ter-Mikirtychev, V. Optical Properties and Optical Spectroscopy of Rare Earth Ions in Solids. In Fundamentals of Fiber Lasers and Fiber Amplifiers; Springer: Cham, Switzerland, 2013; Volume 181, ISBN 978-3-319-02338-0. [Google Scholar]
- Gupta, V.P. Principles and Applications of Quantum Chemistry: 9—Interaction of Radiation and Matter and Electronic Spectra; Elsevier: London, UK, 2016; ISBN 978-0-12-803478-1. [Google Scholar]
- Harren, F.J.; Cotti, G.; Oomens, J.; Hekkert, S.T.L. Photoacoustic Spectroscopy in Trace Gas Monitoring. In Encyclopedia of Analytical Chemistry; John Wiley & Sons: Chichester, UK, 2000; pp. 2203–2226. [Google Scholar]
- Bijnen, F.G.C.; Reuss, J.; Harren, F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef] [Green Version]
- Nikkiso America—UV LED. Overview UV LEDs (Rev 11). Available online: http://www.eqphotonics.de/cms/cms/upload/datasheets/UV%20LEDs_rev11.pdf (accessed on 29 June 2021).
- Zurich Instruments. White Paper: Principles of Lock-In Detection and the State of the Art. 2016. Available online: https://www.zhinst.com/sites/default/files/li_primer/zi_whitepaper_principles_of_lock-in_detection.pdf (accessed on 29 June 2021).
- Pohl, R.W. Mechanik, Akustik und Wärmelehre; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 3662010437. [Google Scholar]
- Pernau, H.-F.; El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Wöllenstein, J.; Willing, B. 5.2.4 Photoakustisches Gasmesssystem zur Bestimmung des Schwefeldioxidgehaltes in Schiffsabgasen. Tagungsband 2019, 425–429. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Safoury, M.; Dufner, M.; Weber, C.; Schmitt, K.; Pernau, H.-F.; Willing, B.; Wöllenstein, J. On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range. Sensors 2021, 21, 4468. https://doi.org/10.3390/s21134468
El-Safoury M, Dufner M, Weber C, Schmitt K, Pernau H-F, Willing B, Wöllenstein J. On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range. Sensors. 2021; 21(13):4468. https://doi.org/10.3390/s21134468
Chicago/Turabian StyleEl-Safoury, Mahmoud, Miguel Dufner, Christian Weber, Katrin Schmitt, Hans-Fridtjof Pernau, Bert Willing, and Jürgen Wöllenstein. 2021. "On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range" Sensors 21, no. 13: 4468. https://doi.org/10.3390/s21134468
APA StyleEl-Safoury, M., Dufner, M., Weber, C., Schmitt, K., Pernau, H. -F., Willing, B., & Wöllenstein, J. (2021). On-Board Monitoring of SO2 Ship Emissions Using Resonant Photoacoustic Gas Detection in the UV Range. Sensors, 21(13), 4468. https://doi.org/10.3390/s21134468