Intelligibility of Haptic Signals in Vehicle Information Systems
Abstract
:1. Introduction
2. Methods
2.1. Hypothesis
2.2. Haptic Design
2.3. Subjects
2.4. Data Gathering
2.5. Experimental Procedure
2.6. Analytical Methodology
3. Results
3.1. Emotional Map for Haptic Signals
3.2. Verification of Emotional Semantic Haptic Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaffary, Y.; Lécuyer, A. The use of haptic and tactile information in the car to improve driving safety: A review of current technologies. Front. ICT 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, M. Human Haptic Perception: Basics and Applications; Springer Science & Business Media: Berlin, Germany, 2008; pp. 15–39. [Google Scholar]
- Chang, W.; Hwang, W.; Ji, Y.G. Haptic seat interfaces for driver information and warning systems. Int. J. Hum. Comput. Interact. 2011, 27, 1119–1132. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wagner, J.R. Evaluation of alternative steering devices with adjustable haptic feedback for semi-autonomous and autonomous vehicles. In SAE Technical Paper; Society of Automotive Engineers(SAE): Warrendale, PA, USA, 2018; No. 2018-01-0572. [Google Scholar]
- Lv, C.; Li, Y.; Xing, Y.; Huang, C.; Cao, D.; Zhao, Y.; Liu, Y. Human–Machine Collaboration for Automated Driving Using an Intelligent Two-Phase Haptic Interface. Adv. Intell. Syst. 2021, 3, 2000229. [Google Scholar] [CrossRef]
- Ju, C.; Son, H.I. Evaluation of haptic feedback in the performance of a teleoperated unmanned ground vehicle in an obstacle avoidance scenario. Int. J. Control. Autom. Syst. 2019, 17, 168–180. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, S.H.; Yun, K.S. Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad. Actuators 2021, 10, 60. [Google Scholar] [CrossRef]
- Myles, K.; Binseel, M.S. The Tactile Modality: A Review of Tactile Sensitivity and Human Tactile Interfaces 2007. Available online: http://www.dtic.mil/get-trdoc/pdf?AD=ADA468389 (accessed on 8 January 2021).
- Chan, A.; MacLean, K.; McGrenere, J. Designing haptic icons to support collaborative turn-taking. Int. J. Hum. -Comput. Stud. 2008, 66, 333–355. [Google Scholar] [CrossRef]
- McCormick, E.J.; Sanders, M.S. Human factors in engineering and design. Ind. Robot 1998, 25, 153. [Google Scholar]
- Kim, S.H.; Shin, J.G.; Sabando, J.F.A. Comparative Study on the Detectability between Haptic and Auditory Signals under Driving and Non-driving Task Conditions. Ind. Eng. Manag. Syst. 2017, 16, 604–618. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, J.K.; Sabando, J.F.A.; Choi, K.I. How Many Haptic Signals Can Be Distinguished By The Driver? In Proceedings of the FISITA 2016 World Automotive Congress, Busan, Korea, 26–30 September 2016. F2016-VDCC-005. [Google Scholar]
- Nagamachi, M. Kansei engineering: A new ergonomic consumer-oriented technology for product development. Int. J. Ind. Erg. 1995, 15, 3–11. [Google Scholar] [CrossRef]
- Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning, 1st ed.; University of Illinois Press: Urbana, IL, USA, 1957; pp. 18–30. [Google Scholar]
- Choi, K.I.; Lee, H.N.; Choe, J.H.; Jung, E.S. Ergonomic Design of Warning Sounds Used in Cars. J. Korean Inst. Ind. Eng. 2009, 35, 101–108. [Google Scholar]
- Kim, S.H.; Lee, H.S. A Study on Semantic Association between Transmitted Information and Design Parameters of Vibrotactile Signals. J. Ergon. Soc. Korea 2013, 32, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Kim, M.J.; Jang, M.S. Evaluation of in-vehicle warning information modalities by Kansei engineering. J. Korean Soc. Transp. 2010, 28, 39–49. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Csiszár, I.; Shields, P.C. Information theory and statistics: A tutorial. Found. Trends® Commun. Inf. Theory 2004, 1, 417–528. [Google Scholar] [CrossRef] [Green Version]
- Telpaz, A.; Rhindress, B.; Zelman, I.; Tsimhoni, O. Haptic seat for automated driving: Preparing the driver to take control effectively. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, NY, USA, 1–3 September 2015; pp. 23–30. [Google Scholar]
- Petermeijer, S.M.; Abbink, D.A.; Mulder, M.; De Winter, J.C. The effect of haptic support systems on driver performance: A literature survey. IEEE Trans. Haptics 2015, 8, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Jafar, F.A.; Rosli, N.A.; Abd Rashid, S.; Ali, M.M.; Shamsuddin, S.; Kassim, A.M. Towards the development of kansei haptic sensing technology for robot application–Exploring human haptic emotion. In Proceedings of the 7th International Conference on Kansei Engineering and Emotion Research 2018, Sarawak, Malaysia, 19–22 March 2018; pp. 622–630. [Google Scholar]
- Shin, J.G.; Choi, G.Y.; Hwang, H.J.; Kim, S.H. Evaluation of Emotional Satisfaction Using Questionnaires in Voice-Based Human–AI Interaction. Appl. Sci. 2021, 11, 1920. [Google Scholar] [CrossRef]
- Kelsch, J.; Dziennus, M.; Schieben, A.; Schömig, N.; Katharina, W.; Merat, N.; Tyron, L.; Ruth, M.; Georgios, K.; Mikael, L.A.; et al. Final Functional Human Factors Recommendations; AdaptiVe Deliverable Report; Wolfsburg, Germany, 2017; pp. 1–67. Available online: https://www.adaptive-ip.eu/index.php/deliverables_papers.html (accessed on 4 July 2021).
- Park, K.; Im, Y. Ergonomic Guidelines of Head-Up Display User Interface during Semi-Automated Driving. Electronics 2020, 9, 611. [Google Scholar] [CrossRef] [Green Version]
- Dols, J.F.; Girbés-Juan, V.; Luna, Á.; Catalán, J. Data acquisition system for the characterization of biomechanical and ergonomic thresholds in driving vehicles. Sustainability 2020, 12, 7013. [Google Scholar] [CrossRef]
- Salvati, L.; d’Amore, M.; Fiorentino, A.; Pellegrino, A.; Sena, P.; Villecco, F. Development and Testing of a Methodology for the Assessment of Acceptability of LKA Systems. Machines 2020, 8, 47. [Google Scholar] [CrossRef]
Set 1 | Set 2 | Set 3 |
---|---|---|
2 G/80 Hz | 2 G/100 Hz | 2 G/230 Hz |
3 G/90 Hz | 3 G/150 Hz | 3 G/180 Hz |
4 G/200 Hz | 4 G/190 Hz | 4 G/140 Hz |
5 G/250 Hz | 5 G/240 Hz | 5 G/110 Hz |
Relaxed–Emergent | Calm–Terrified |
Negligible–Attentive | Tender–Harsh |
Thin–Bold | Light–Heavy |
Ambiguous–Distinct | Probable–Certain |
Leisurely–Pressing | Ordinary–Salient |
Safe–Dangerous | Minor–Critical |
Slight–Chunky | Low–High |
Vague–Clear | Subsidiary–Essential |
Trivial–Significant | Declining–Rising |
Mild–Strong | Simple–Complex |
Factor 1 | Factor 2 |
---|---|
Mild–Strong Low–High Leisurely–Pressing Simple–Complex Tender–Harsh Negligible–Attentive | Ordinary–Salient Subsidiary–Essential Vague–Clear Ambiguous–Distinct |
Set 1 | Set 2 | Set 3 |
---|---|---|
2 G/140 Hz | 2 G/240 Hz | 2 G/220 Hz |
3 G/170 Hz | 3 G/210 Hz | 3 G/160 Hz |
4 G/200 Hz | 4 G/180 Hz | 4 G/250 Hz |
5 G/230 Hz | 5 G/150 Hz | 5 G/190 Hz |
Static–Dynamic | Loose–Tight |
Laid-back–Tense | Safe–Dangerous |
Ordinary–Special | Quiet–Flush up |
Calm–Panic | Weak–Strong |
Easygoing–Excited | Carefree–Anxious |
Minor–Major | Insensitive–Sensitive |
Comfortable–Disturbed | Peaceful–Emergent |
Relaxed–Nervous | Careless–Cautious |
Leisurely–Urgent | Unstable–Stable |
Mild–Serious | Frivolous–Prudent |
Factor 1 | Factor 2 |
---|---|
Static–Dynamic Laid-back–Tense Ordinary–Special Calm–Panic Easygoing–Excited Minor–Major Comfortable–Disturbed Relaxed–Nervous Leisurely–Urgent Mild–Serious Safe–Dangerous Loose–Tight | Unstable–Stable Careless–Cautious Frivolous–Prudent |
Haptic Signals (Acc/Freq) | Emotional Semantics | Discriminability |
---|---|---|
2 G/140 Hz | Urgency low ↓ Dangerousness high ↑ | No. 1 haptic signal |
5 G/150 Hz | Urgency high ↑ Dangerousness low ↓ | No. 2 haptic signal |
2 G/240 HZ | Urgency low ↓ Dangerousness low ↓ | No. 3 haptic signal |
5 G/250 Hz | Urgency high ↑ Dangerousness high↑ | No. 4 haptic signal |
Discriminability | Emotional Semantics | Total | |
---|---|---|---|
Response | 288 | 296 | 584 |
Non-response | 112 | 104 | 216 |
Total | 400 | 400 | 800 |
Haptic Signals | Sample Size | Average | S.D. | S.E |
---|---|---|---|---|
Discriminability | 288 | 1608 | 470 | 28 |
Emotional Semantic | 296 | 1371 | 499 | 29 |
S.S | DF | M.S | F-Value | p-Value | |
---|---|---|---|---|---|
Discri. signals | 66,202,81 | 3 | 220,670 | 12.65 | 0.000 |
Subjects | 27,160,692 | 99 | 274,350 | 1.57 | |
Signal X Subject | 51,820,671 | 297 | 174,480 | ||
Error | 0 | ||||
Total | 85,601,644 | 399 |
S.S | DF | M.S | F-Value | p-Value | |
---|---|---|---|---|---|
Semantic signals | 3,192,551 | 3 | 1,064,184 | 3.67 | 0.013 |
Subjects | 23,080,858 | 99 | 233,140 | 0.80 | |
Signal X Subject | 86,027,400 | 297 | 289655 | ||
Error | 0 | ||||
Total | 112,300,809 | 399 |
Signals | 2 G/140 Hz | 5 G/150 Hz | 2 G/240 Hz | 5 G/250 Hz | No-Response | |
---|---|---|---|---|---|---|
(Correct Response Number/Total Signal Number) | ||||||
Discriminability | 2 G/140 Hz | 69/100 | 5/100 | 19/100 | 1/100 | 6/100 |
5 G/150 Hz | 9/100 | 73/100 | 12/100 | 5/100 | 1/100 | |
2 G/240 Hz | 24/100 | 8/100 | 63/100 | 1/100 | 4/100 | |
5 G/250 Hz | 1/100 | 11/100 | 3/100 | 83/100 | 2/100 | |
Emotional semantic | 2 G/140 Hz | 73/100 | 1/100 | 18/100 | 0/100 | 8/100 |
5 G/150 Hz | 18/100 | 70/100 | 4/100 | 3/100 | 5/100 | |
2 G/240 Hz | 7/100 | 19/100 | 70/100 | 1/100 | 3/100 | |
5 G/250 Hz | 6/100 | 6/100 | 0/100 | 83/100 | 5/100 |
H(X) | H(Y) | H(X,Y) | T(X,Y) | Equivocation | Noise | |
---|---|---|---|---|---|---|
Discriminability | 2.00 | 2.14 | 3.25 | 0.89 | 1.11 | 1.25 |
Emotional semantic | 2.00 | 2.19 | 3.18 | 1.01 | 0.99 | 1.18 |
p-value | 0.005 | 0.008 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-G.; Kim, S.-H. Intelligibility of Haptic Signals in Vehicle Information Systems. Sensors 2021, 21, 4583. https://doi.org/10.3390/s21134583
Shin J-G, Kim S-H. Intelligibility of Haptic Signals in Vehicle Information Systems. Sensors. 2021; 21(13):4583. https://doi.org/10.3390/s21134583
Chicago/Turabian StyleShin, Jong-Gyu, and Sang-Ho Kim. 2021. "Intelligibility of Haptic Signals in Vehicle Information Systems" Sensors 21, no. 13: 4583. https://doi.org/10.3390/s21134583
APA StyleShin, J. -G., & Kim, S. -H. (2021). Intelligibility of Haptic Signals in Vehicle Information Systems. Sensors, 21(13), 4583. https://doi.org/10.3390/s21134583