A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks
Abstract
:1. Introduction
- (a)
- Presentation of a new approach to comparing the performance of video codecs;
- (b)
- Showing the whole video quality assessment process—the preparation of video footage and test material, the assessment of the quality of individual samples, and the presentation of results;
- (c)
- Implementation of the spline interpolation method for building R–D curves for the examined codecs;
- (d)
- Presentation of the results of comparing the H.264, H.265, and AV1 codecs, which are more quality-metric resistant than those previously presented in the literature.
2. Materials and Methods
DH = min{max(D1,1, …, D1,N1), max(D2,1, …, D2,N2)}.
ffmpeg -s:v 1920x1080 -i input.yuv -vf scale=858:480 -c:v rawvideo -pix_fmt yuv420p output.yuv,
- (a)
- for the H.264 encoded samples
ffmpeg -f rawvideo -pix_fmt yuv420p -s:v 858x480 -r 25 -i ref_file.yuv –b:v bitrate_in_bps -c:v libx264 test_480p_h264_N_file.mp4
- (b)
-
for the H.265 encoded samples
ffmpeg -f rawvideo -pix_fmt yuv420p -s:v 858x480 -r 25 -i ref_file.yuv –b:v bitrate_in_bps -c:v libx265 test_480p_h265_N_file.mp4
- (c)
-
for the AV1 encoded samples
ffmpeg -f rawvideo -pix_fmt yuv420p -s:v 858x480 -r 25 -i ref_file.yuv –b:v bitrate_in_bps -c:v libaom-av1 –strict -2 test_480p_av1_N_file.mp4
3. Results
3.1. Results of the Objective Quality Assessment for the Examined Video Samples Using Different Codecs
3.2. Comparison of the R–D Curves for the Examined Codecs and Video Samples
- Firstly, the observed video quality values, expressed by both the PSNR and SSIM metrics, are directly proportional to the coding bitrate. However, these relations are not linear;
- Secondly, the obtained results are consistent with those presented in the literature [33], where the AV1 codec presents the highest quality, with the H.264 codec achieving the lowest scores at the same reference bitrate;
- Thirdly, the R–D curves, describing a specific codec, differ from each other, depending on the metric and video footage used.
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International, C. Cisco Visual Networking Index: Forecast and Methodology. White Paper. 2017. Available online: https://networking.report/whitepapers/cisco-visual-networking-index-forecast-and-trends-2017%e2%80%932022 (accessed on 5 May 2021).
- Emear, A.; Knowledge, C.; Ckn, N. Cisco Visual Networking Index (VNI) Complete Forecast Update, 2017–2022; Cisco Systems: San Jose, CA, USA, 2018; pp. 2017–2022. [Google Scholar]
- Bhanu, B.; Ravishankar, C.V.; Roy-Chowdhury, A.K.; Aghajan, H.; Terzopoulos, D. (Eds.) Distributed Video Sensor Networks; Springer: London, UK, 2011. [Google Scholar]
- Apple. HTTP Live Streaming. Available online: https://developer.apple.com/streaming/ (accessed on 25 November 2020).
- Adobe HTTP Dynamic Streaming. Available online: https://www.adobe.com/devnet/hds.html (accessed on 25 November 2020).
- Microsoft. Smooth Streaming. Available online: https://www.microsoft.com/silverlight/smoothstreaming/ (accessed on 25 November 2020).
- ISO/IEC, INTERNATIONAL STANDARD ISO/IEC Information Technology. Dynamic Adaptive Streaming Over HTTP (DASH)—Part 1: Media Presentation Description and Segment Formats; ISO/IEC: Washington, DC, USA, 2019; Volume 2019. [Google Scholar]
- Michalos, M.G.; Kessanidis, S.P.; Nalmpantis, S.L. Dynamic adaptive streaming over HTTP. J. Eng. Sci. Technol. Rev. 2012, 5, 30–34. [Google Scholar] [CrossRef]
- Stockhammer, T. Dynamic adaptive streaming over HTTP—Standards and design principles. In Proceedings of the MMSys’11 2011 ACM Conference on Multimedia Systems, San Jose, CA, USA, 23–25 February 2011; pp. 133–143. [Google Scholar]
- Sodagar, I. The MPEG-dash standard for multimedia streaming over the internet. IEEE Multimed. 2011, 18, 62–67. [Google Scholar] [CrossRef]
- Bentaleb, A.; Taani, B.; Begen, A.C.; Timmerer, C.; Zimmermann, R. A Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP. IEEE Commun. Surv. Tutor. 2019, 21, 562–585. [Google Scholar] [CrossRef]
- Thang, T.C.; Ho, Q.D.; Kang, J.W.; Pham, A.T. Adaptive streaming of audiovisual content using MPEG DASH. IEEE Trans. Consum. Electron. 2012, 58, 78–85. [Google Scholar] [CrossRef]
- Pozueco, L.; Pañeda, X.G.; García, R.; Melendi, D.; Cabrero, S.; Orueta, G.D. Adaptation engine for a streaming service based on MPEG-DASH. Multimed. Tools Appl. 2015, 74, 7983–8002. [Google Scholar] [CrossRef]
- Vranjes, M.; Rimac-Drlje, S.; Zagar, D. Objective video quality metrics. In Proceedings of the ELMAR 2007, Zadar, Croatia, 12–14 September 2007; pp. 45–49. [Google Scholar]
- Cika, P.; Kovac, D.; Bilek, J. Objective video quality assessment methods: Video encoders comparison. Int. Congr. Ultra Mod. Telecommun. Control Syst. Work. 2016, 2016, 335–338. [Google Scholar]
- Tanchenko, A. Visual-PSNR measure of image quality. J. Vis. Commun. Image Represent. 2014, 25, 874–878. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Wang, X.; Xie, R.; Song, L. VMAF oriented perceptual optimization for video coding. In Proceedings of the IEEE International Symposium on Circuits and Systems, Saporo, Japan, 26–29 May 2019. [Google Scholar]
- ITU. Methodologies for the Subjective Assessment of the Quality of Television Images (ITU-R BT.500–14); International Telecommunication Union: Geneva, Switzerland, 2020; Volume 14. [Google Scholar]
- Duanmu, Z.; Zeng, K.; Ma, K.; Rehman, A.; Wang, Z. A Quality-of-Experience Index for Streaming Video. IEEE J. Sel. Top. Signal Process. 2017, 11, 154–166. [Google Scholar] [CrossRef]
- Janowski, L.; Romaniak, P.; Papir, Z. Content driven QoE assessment for video frame rate and frame resolution reduction. Multimed. Tools Appl. 2012, 61, 769–786. [Google Scholar] [CrossRef]
- Li, S.; Ma, L.; Ngan, K.N. Full-Reference Video Quality Assessment by Decoupling Detail Losses and Additive Impairments. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1100–1112. [Google Scholar] [CrossRef]
- Ma, L.; Li, S.; Ngan, K.N. Reduced-reference video quality assessment of compressed video sequences. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1441–1456. [Google Scholar] [CrossRef]
- Shahid, M.; Rossholm, A.; Lövström, B.; Zepernick, H.J. No-reference image and video quality assessment: A classification and review of recent approaches. Eurasip J. Image Video Process. 2014, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Vlaovic, J.; Galic, I.; Rimac-Drlje, S. Analysis of Spatial and Temporal Information of DASH Dataset. In Proceedings of the International Conference on Systems, Signals and Image, Maribor, Slovenia, 20–22 June 2018; Volume 2018. [Google Scholar]
- Vlaovic, J.; Rimac-Drlje, S.; Vranjes, F.; Kovac, R.P. Evaluation of adaptive bitrate selection algorithms for MPEG DASH. In Proceedings of the Elmar 2019 International Symposium Electronics in Marine, Zadar, Hrvatska, 23–25 September; pp. 73–76.
- ITU-T; ISO/IEC. Advanced Video Coding for Generic Audiovisual Services, ITU-T Recommendation, H.264 and ISO/IEC 14496–10 (MPEG-4 AVC); International Telecommunication Union: Geneva, Switzerland, 2003. [Google Scholar]
- ITU-T. High Efficiency Video Coding. Recommendation ITU-T H.265; International Telecommunication Union: Geneva, Switzerland, 2019; Volume 265, p. 1. [Google Scholar]
- Alliance for Open Media. An Alliance of Global Media Innovators. Available online: http://aomedia.org (accessed on 25 November 2020).
- Bjøntegaard, G. Calculation of Average PSNR Differences between RD-Curves; VCEG-M33, ITU-T SG16/Q6; International Telecommunication Union: Geneva, Switzerland, 2001. [Google Scholar]
- Akyazi, P.; Ebrahimi, T. Comparison of Compression Efficiency between HEVC/H.265, VP9 and AV1 based on Subjective Quality Assessments. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Sardinia, Italy, 29 May–1 June 2018; pp. 1–6. [Google Scholar]
- Klink, J. Video Quality Assessment: Some Remarks on Selected Objective Metrics. In Proceedings of the 2020 International Conference on Software, Telecommunications and Computer Networks, Hvar, Croatia, 23–25 September 2020. [Google Scholar]
- Laude, T.; YAdhisantoso, G.; Voges, J.; Munderloh, M.; Ostermann, J. A Comprehensive Video Codec Comparison. APSIPA Trans. Signal Inf. Process. 2019, 8, 2019. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.J.; Wiegand, T. Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 1998, 15, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Laude, T.; Ostermann, J. Contour-based multidirectional intra coding for HEVC. In Proceedings of the 2016 Picture Coding Symposium PCS 2016, Nuremberg, Germany, 4–7 December 2016. [Google Scholar]
- Laude, T.; Haub, F.; Ostermann, J. HEVC Inter Coding using Deep Recurrent Neural Networks and Artificial Reference Pictures. In Proceedings of the Picture Coding Symposium PCS 2019, Ningbo, China, 15–19 November.
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, K.; Zhang, Q. From QoS to QoE: A Tutorial on Video Quality Assessment. IEEE Commun. Surv. Tutor. 2015, 17, 1126–1165. [Google Scholar] [CrossRef]
- Hanhart, P.; Ebrahimi, T. Calculation of average coding efficiency based on subjective quality scores. J. Vis. Commun. Image Represent. 2014, 25, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; TQiao Tan, H.; Li, M.; Zhang, Y. Solving the problem of Runge phenomenon by pseudoinverse cubic spline. In Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 19–21 December 2014; pp. 1226–1231. [Google Scholar]
- Chetna, R.; Ramkumar, K.; Jain, S. Performance comparison of spline curves and chebyshev polynomials for managing keys in MANETs. In Proceedings of the 7th International Conference on Computing for Sustainable Global Development, INDIACom 2020, New Delhi, India, 12–14 March 2020; pp. 64–67. [Google Scholar]
- Bojanov, B.S.; Hakopian, H. Spline Functions and Multivariate Interpolations. Springer: Cham, The Netherlands, 2010. [Google Scholar]
- Katsenou, A.V.; Afonso, M.; Agrafiotis, D.; Bull, D.R. Predicting video rate-distortion curves using textural features. In Proceedings of the 2016 Picture Coding Symposium, PCS 2016, Nuremberg, Germany, 4–7 December 2016. [Google Scholar]
- Chen MJand Bovik, A.C. Fast structural similarity index algorithm. J. Real Time Image Process. 2011, 6, 281–287. [Google Scholar] [CrossRef]
- Mercat, A.; Viitanen, M.; Vanne, J. UVG dataset: 50/120fps 4K sequences for video codec analysis and development. In Proceedings of the MMSys 2020 Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 297–302. [Google Scholar]
- FFmpeg: A Complete, Cross -Platform Solution to Record, Convert and Stream Audio and Video. Available online: https://www.ffmpeg.org/ (accessed on 29 November 2020).
- ITU-T. Subjective Video Quality Assessment Methods for Multimedia Applications; ITU Telecommunication Standardization Sector; International Telecommunication Union: Geneva, Switzerland, 1996. [Google Scholar]
- Elecard. Video Quality Estimator. Available online: https://www.elecard.com/products/video-analysis/video-quality-estimator (accessed on 1 December 2020).
- Barman, N.; Martini, M.G. H.264/MPEG-AVC, H.265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming. In Proceedings of the 2017 9th International Conference on Quality of Multimedia Experience, QoMEX 2017, Erfurt, Germany, 31 May–2 June 2017. [Google Scholar]
- Akramullah, S.; Akramullah, S. Video Quality Metrics. In Digital Video Concepts, Methods, and Metrics; Apress: New York, NY, USA, 2014; pp. 101–160. [Google Scholar]
- Guo, L.; de Cock, J.; Aaron, A. Compression Performance Comparison of x264, x265, libvpx and aomenc for On-Demand Adaptive Streaming Applications. In Proceedings of the 2018 Picture Coding Symposium, PCS 2018, San Francisco, CA, USA, 24–27 June 2018. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates. Telecommun. Syst. 2012, 49, 35–48. [Google Scholar] [CrossRef]
- Battista, S.; Conti, M.; Orcioni, S. Methodology for Modeling and Comparing Video Codecs: HEVC, EVC, and VVC. Electronics 2020, 9, 1579. [Google Scholar] [CrossRef]
Reference Files: beauty_raw480p.yuv and readystgo_raw480p.yuv | |||
---|---|---|---|
Target Bitrate 1 [kbps] | H.264 Encoded mp4 File | H.265 Encoded mp4 File | AV1 Encoded mp4 File |
500 | tvf_480p_h264_500k 2 | tvf_480p_h265_500k | tvf_480p_av1_500k |
600 | tvf_480p_h264_600k | tvf_480p_h265_600k | tvf_480p_av1_600k |
700 | tvf_480p_h264_700k | tvf_480p_h265_700k | tvf_480p_av1_700k |
800 | tvf_480p_h264_800k | tvf_480p_h265_800k | tvf_480p_av1_800k |
900 | tvf_480p_h264_900k | tvf_480p_h265_900k | tvf_480p_av1_900k |
1000 | tvf_480p_h264_1000k | tvf_480p_h265_1000k | tvf_480p_av1_1000k |
1500 | tvf_480p_h264_1500k | tvf_480p_h265_1500k | tvf_480p_av1_1500k |
2000 | tvf_480p_h264_2000k | tvf_480p_h265_2000k | tvf_480p_av1_2000k |
Reference File: beauty_raw480p.yuv, Video codec: H.264 | |||||||
---|---|---|---|---|---|---|---|
PSNR Metric | SSIM Metric | ||||||
Target Bitrate [kbps] | Measured Bitrate 1 (MB) [kbps] | PSNR [dB] | Interpolated Bitrate 2 (IB) [kbps] | IDR [%] | SSIM | Interpolated Bitrate (IB) [kbps] | IDR [%] |
1100 | 1099 | 42.61 | 1095 | 0.36 | 0.9637 | 1097 | 0.18 |
1200 | 1196 | 42.74 | 1199 | 0.25 | 0.9642 | 1202 | 0.50 |
1300 | 1295 | 42.84 | 1295 | 0 | 0.9647 | 1299 | 0.31 |
1400 | 1392 | 42.95 | 1411 | 1.36 | 0.9651 | 1421 | 2.08 |
1600 | 1595 | 43.08 | 1577 | 1.13 | 0.9657 | 1565 | 1.88 |
1700 | 1691 | 43.17 | 1693 | 0.12 | 0.9660 | 1673 | 1.06 |
1800 | 1791 | 43.24 | 1800 | 0.50 | 0.9664 | 1773 | 1.01 |
1900 | 1892 | 43.30 | 1897 | 0.26 | 0.9667 | 1880 | 0.63 |
Average: | 0.50 | 0.95 | |||||
Variance: | 0.51 | 1.48 |
H.264 | H.265 | AV1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Target Bitrate [kbps] | Bitrate 1 [kbps] | PSNR [dB] | SSIM | Bitrate [kbps] | PSNR [dB] | SSIM | Bitrate [kbps] | PSNR [dB] | SSIM |
500 | 501 | 41.042 | 0.956 | 505 | 41.856 | 0.960 | 484 | 42.627 | 0.964 |
600 | 600 | 41.497 | 0.958 | 602 | 42.259 | 0.962 | 559 | 42.924 | 0.966 |
700 | 699 | 41.848 | 0.960 | 702 | 42.581 | 0.964 | 629 | 43.156 | 0.967 |
800 | 799 | 42.123 | 0.961 | 801 | 42.838 | 0.965 | 692 | 43.334 | 0.967 |
900 | 899 | 42.324 | 0.962 | 900 | 43.041 | 0.966 | 754 | 43.483 | 0.968 |
1000 | 1000 | 42.482 | 0.963 | 1001 | 43.207 | 0.967 | 817 | 43.615 | 0.969 |
1500 | 1494 | 43.019 | 0.965 | 1502 | 43.725 | 0.969 | 1119 | 44.045 | 0.97 |
2000 | 1994 | 43.362 | 0.967 | 2007 | 44.013 | 0.970 | 1431 | 44.328 | 0.971 |
H.264 | H.265 | AV1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Target Bitrate [kbps] | Bitrate [kbps] | PSNR [dB] | SSIM | Bitrate [kbps] | PSNR [dB] | SSIM | Bitrate [kbps] | PSNR [dB] | SSIM |
500 | 511 | 32.812 | 0.917 | 526 | 34.052 | 0.931 | 546 | 36.32 | 0.953 |
600 | 613 | 33.636 | 0.928 | 630 | 34.825 | 0.940 | 653 | 37.206 | 0.960 |
700 | 716 | 34.378 | 0.937 | 736 | 35.532 | 0.947 | 755 | 37.921 | 0.965 |
800 | 819 | 35.033 | 0.944 | 841 | 36.144 | 0.953 | 856 | 38.551 | 0.969 |
900 | 922 | 35.615 | 0.950 | 947 | 36.704 | 0.958 | 956 | 39.106 | 0.972 |
1000 | 1025 | 36.146 | 0.954 | 1052 | 37.203 | 0.961 | 1058 | 39.605 | 0.975 |
1500 | 1540 | 38.188 | 0.969 | 1579 | 39.180 | 0.973 | 1532 | 41.464 | 0.983 |
2000 | 2055 | 39.710 | 0.976 | 2112 | 40.637 | 0.980 | 1887 | 42.544 | 0.986 |
Compared Codecs | ABSBDR [%] | ΔBDR [%] | ABSDR [%] | ΔDR [%] | ||
---|---|---|---|---|---|---|
based on: | based on: | |||||
PSNR | SSIM | PSNR | SSIM | |||
H.264 vs. H.265 * | −35.29 | −36.05 | 0.76 | −37.72 | −37.48 | 0.24 |
H.264 vs. AV1 * | −60.33 | −63.02 | 2.69 | −61.33 | −62.28 | 0.95 |
H.265 vs. AV1 * | −37.57 | −40.05 | 2.48 | −39.21 | −40.46 | 1.25 |
Avg. | 1.98 | 0.81 |
Compared Codecs | ABSBDR [%] | ΔBDR [%] | ABSDR [%] | ΔDR [%] | ||
---|---|---|---|---|---|---|
based on: | based on: | |||||
PSNR | SSIM | PSNR | SSIM | |||
H.264 vs. H.265 * | −17.52 | −15.22 | 2.3 | −16.48 | −14.68 | 1.8 |
H.264 vs. AV1 * | −48.20 | −44.85 | 3.35 | −48.26 | −44.79 | 3.47 |
H.265 vs. AV1 * | −38.23 | −35.98 | 2.25 | −38.23 | −36.20 | 2.03 |
Avg. | 2.63 | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klink, J. A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks. Sensors 2021, 21, 4589. https://doi.org/10.3390/s21134589
Klink J. A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks. Sensors. 2021; 21(13):4589. https://doi.org/10.3390/s21134589
Chicago/Turabian StyleKlink, Janusz. 2021. "A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks" Sensors 21, no. 13: 4589. https://doi.org/10.3390/s21134589
APA StyleKlink, J. (2021). A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks. Sensors, 21(13), 4589. https://doi.org/10.3390/s21134589