Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat
Abstract
:1. Introduction
2. Vibration Measurement of the Cryostat
3. Laser Stabilization and Vibration Noise Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 2012, 6, 687–692. [Google Scholar] [CrossRef]
- Hagemann, C. Ultra-stable laser based on a cryogenic single-crystal silicon cavity. Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]
- Matei, D.G.; Legero, T.; Grebing, C.; Häfner, S.; Lisdat, C.; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J.M.; Riehle, F.; et al. A second generation of low thermal noise cryogenic silicon resonators. J. Phys. Conf. Ser. 2016, 723, 012031. [Google Scholar] [CrossRef]
- Matei, D.G.; Legero, T.; Häfner, S.; Grebing, C.; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J.M.; Ye, J.; Riehle, F.; et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 2017, 118, 263202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Robinson, J.M.; Sonderhouse, L.; Oelker, E.; Benko, C.; Hall, J.L.; Legero, T.; Matei, D.G.; Riehle, F.; Sterr, U.; et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett. 2017, 119, 243601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.M.; Oelker, E.; Milner, W.R.; Zhang, W.; Legero, T.; Matei, D.G.; Riehle, F.; Sterr, U.; Ye, J. Crystalline optical cavity at 4 K with thermal-noiselimited instability and ultralow drift. Optica 2019, 6, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Kudeyarov, K.S.; Zhadnov, N.O.; Vishnyakova, G.A.; Kryuchkov, D.S.; Khabarova, K.Y.; Kolachevsky, N.N. Optical properties of a silicon ultrastable cavity with crystalline mirrors. J. Phys. Conf. Ser. 2020, 1692, 012021. [Google Scholar] [CrossRef]
- Wiens, E.; Kwong, C.J.; Muller, T.; Schiller, S. A simplified cryogenic optical resonator apparatus providing ultra-low frequency drift. Rev. Sci. Instrum. 2020, 91, 045112. [Google Scholar] [CrossRef] [PubMed]
- Ushiba, T. Laser Frequency Stabilization with a Cryogenic Optical Cavity. Ph.D. Thesis, University of Tokyo, Tokyo, Janpan, 2015. [Google Scholar]
- Hao, L.; Gallop, J.C.; Klein, N.; Winter, M. Low-phase noise temperature-compensated cryogenic whispering gallery mode resonator operated at 63 K in a closed-cycle cooler. IEEE Trans. Instrum. Meas. 2001, 50, 515–518. [Google Scholar] [CrossRef]
- Hartnett, J.G.; Nand, N.R.; Wang, C.; Floch, J.M. Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: First results. IEEE Trans. Ultrason. Ferr. 2010, 57, 1034–1038. [Google Scholar] [CrossRef] [Green Version]
- Caparrelli, S.; Majorana, E.; Moscatelli, V.; Pascucci, E.; Perciballi, M.; Puppo, P.; Rapagnani, P.; Ricci, F. Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Rev. Sci. Instrum. 2006, 77, 095102. [Google Scholar] [CrossRef]
- Dubielzig, T.; Halama, S.; Hahn, H.; Zarantonello, G.; Niemann, M.; Bautista-Salvador, A.; Ospelkaus, C. Ultra-low vibration closed-cycle cryogenic surface-electrode ion trap apparatus. Rev. Sci. Instrum. 2021, 92, 043201. [Google Scholar] [CrossRef]
- Okabayashi, N.; Komeda, T. Inelastic electron tunneling spectroscopy with a dilution refrigerator based scanning tunneling microscope. Meas. Sci. Technol. 2009, 20, 095602. [Google Scholar] [CrossRef]
- Hackley, J.D.; Kislitsyn, D.A.; Beaman, D.K.; Ulrich, S.; Nazin, G.V. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat. Rev. Sci. Instrum. 2014, 85, 2479. [Google Scholar] [CrossRef]
- Grop, S.; Bourgeois, P.Y.; Bazin, N.; Kersalé, Y.; Rubiola, E.; Langham, C.; Oxborrow, M.; Clapton, D.; Walker, S.; Vicente, J.; et al. ELISA: A cryocooled 10 GHz oscillator with 10−15 frequency stability. Rev. Sci. Instrum. 2010, 81, 025102. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. (KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration), Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2018, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Somiya, K. Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 2012, 29, 124007. [Google Scholar] [CrossRef] [Green Version]
- Braxmaier, C.; Müller, H.; Pradl, O.; Mlynek, J.; Peters, A.; Schiller, S. Tests of relativity using a cryogenic optical resonator. Phys. Rev. Lett. 2002, 88, 010401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Addabbo, A.; Bucci, C.; Canonica, L.; Domizio, S.; Gorla, P.; Marini, L.; Nucciotti, A.; Nutini, I.; Rusconi, C.; Welliver, B. An active noise cancellation technique for the CUORE pulse tube cryocoolers. Cryogenics 2018, 93, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Ye, Y.X.; Shi, X.H.; Wang, Z.Y.; Yan, C.J.; He, L.L.; Lu, Z.H.; Zhang, J. A hybrid silicon-sapphire cryogenic Fabry Perot cavity using hydroxide catalysis bonding. Class. Quantum Grav. 2019, 36, 105007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.L.; Liu, K.; Cheng, F.H.; Feng, X.H.; Li, K.; Lu, Z.H.; Zhang, J. Long-term digital frequency-stabilized laser source for large-scale passive laser gyroscopes. Rev. Sci. Instrum. 2020, 91, 013001. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.Y.; Ye, Y.X.; Shi, X.H.; Wang, Z.Y.; Deng, K.; Zhang, J.; Lu, Z.H. Thermal-noise-limited higher-order mode locking of a reference cavity. Opt. Lett. 2018, 43, 1690. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, X.H.; Zeng, X.Y.; Lü, X.L.; Deng, K.; Lu, Z.H. Characterization of electrical noise limits in ultra-stable laser systems. Rev. Sci. Instrum. 2016, 87, 123105. [Google Scholar] [CrossRef]
- Amirikas, R.; Bertolini, A.; Bialowons, W. Vibration stability studies of a superconducting accelerating module quadrupole operating at 4.5 K. In Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007; Volume 2065. [Google Scholar]
- Hoffman, J.E. A Search for alternative electronic order in the high temperature superconductor Bi2Sr2CaCu2O8+δ by scanning tunneling microscopy. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2003. [Google Scholar]
- Fu, X.; Li, X. Study on geophones’ damping variation with temperature. J. Transducer Technol. 2004, 23, 41–43. [Google Scholar]
- Wang, C.; Hartnett, J.G. A vibration free cryostat using pulse tube cryocooler. Cryogenics 2010, 20, 336. [Google Scholar] [CrossRef]
- Micke, P.; Stark, J.; King, S.A.; Leopold, T.; Pfeifer, T.; Schmöger, L.; Schwarz, M.; Spieb, L.J.; Schmidt, P.O.; López-Urrutia, J.R. Crespo Closed-cycle, low-vibration 4K cryostat for ion traps and other applications. Rev. Sci. Instrum. 2019, 90, 065104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, B.; Marra, G.; Johnson, L.A.M.; Margolis, H.S.; Webster, S.A.; Wright, L.; Lea, S.N.; Gill, P.; Bayvel, P. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments. Appl. Opt. 2014, 35, 8157. [Google Scholar] [CrossRef] [PubMed]
Parameter | Specification@25 C | Fitted@293 K | [email protected] K |
---|---|---|---|
(Hz) | 10 | ||
G(V/m/s) | |||
() | 1250 | ||
D(kg/s) | |||
L(H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; He, L.; Sun, Y.; Zhang, F.; Wang, Z.; Lu, Z.; Zhang, J. Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat. Sensors 2021, 21, 4696. https://doi.org/10.3390/s21144696
Ye Y, He L, Sun Y, Zhang F, Wang Z, Lu Z, Zhang J. Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat. Sensors. 2021; 21(14):4696. https://doi.org/10.3390/s21144696
Chicago/Turabian StyleYe, Yanxia, Leilei He, Yunlong Sun, Fenglei Zhang, Zhiyuan Wang, Zehuang Lu, and Jie Zhang. 2021. "Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat" Sensors 21, no. 14: 4696. https://doi.org/10.3390/s21144696
APA StyleYe, Y., He, L., Sun, Y., Zhang, F., Wang, Z., Lu, Z., & Zhang, J. (2021). Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat. Sensors, 21(14), 4696. https://doi.org/10.3390/s21144696