An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Sensors
2.2. Description of Dataset
2.3. Methodology
Training and Test Sets
3. Results
3.1. Analysis of Dataset
3.2. Fitting Ozone
3.2.1. Selection of the Model
3.2.2. Evaluation of the Selected Model
3.3. Fitting Nitrogen Dioxide
3.4. Fitting Carbon Monoxide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | 205.52408 | 13.85254 | 14.837 | <2 × 10−16 |
α1 | −0.38428 | 0.02208 | −17.402 | <2 × 10−16 |
α2 | −0.10342 | 0.02386 | −4.335 | 0.000017738 |
α3 | 0.48487 | 0.03688 | 13.146 | <2 × 10−16 |
α4 | 4.89923 | 0.43472 | 11.270 | <2 × 10−16 |
α5 | 0.41505 | 0.07775 | 5.338 | 0.000000144 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−29.964 | −7.158 | −1.064 | 5.946 | 45.364 |
R-squared: 0.681 |
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | 306.28198 | 23.25716 | 13.169 | <2 × 10−16 |
α1 | −0.56296 | 0.03834 | −14.685 | <2 × 10−16 |
α2 | −0.12499 | 0.02869 | −4.357 | 1.76 × 10−5 |
α3 | 0.53380 | 0.04452 | 11.989 | <2 × 10−16 |
α4 | 6.29591 | 0.55686 | 11.306 | <2 × 10−16 |
α5 | 0.72325 | 0.09612 | 7.525 | 5.04 × 10−13 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−25.390 | −6.507 | −0.237 | 5.456 | 40.765 |
R-squared: 0.6555 |
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | 3604.9455 | 261.9849 | 13.760 | <2 × 10−16 |
α1 | −4.4098 | 0.3387 | −13.021 | <2 × 10−16 |
α2 | 0.1679 | 0.1015 | 1.654 | 0.09886 |
α3 | 1.1791 | 0.1528 | 7.716 | 6.90 × 10−14 |
α4 | 4.5623 | 1.5081 | 3.025 | 0.00262 |
α5 | 1.6188 | 0.3511 | 4.611 | 5.13 × 10−6 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−132.41 | −26.88 | −3.60 | 25.60 | 210.30 |
R-squared: 0.5793 |
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | 4077.0760 | 321.4378 | 12.684 | <2 × 10−16 |
α1 | −5.0366 | 0.4119 | −12.229 | <2 × 10−16 |
α2 | 0.1847 | 0.1297 | 1.424 | 0.15552 |
α3 | 0.8636 | 0.1959 | 4.407 | 0.00001417 |
α4 | 6.0151 | 1.9619 | 3.066 | 0.00235 |
α5 | 2.0935 | 0.3812 | 5.492 | 0.00000008 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−72.537 | −27.893 | −3.568 | 22.071 | 224.530 |
R-squared: 0.4749 |
References
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Stanaway, G.; Afshin, A.; Gakidou, E.; Lim, S.; Abate, K.; Cristiana, A.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Jaimini, U.; Banerjee, T.; Romine, W.; Thirunarayan, K.; Sheth, A.; Kalra, M. Investigation of an indoor air quality sensor for asthma management in children. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted air quality parameters: A review. Environ. Prog. Sustain. Energy 2021, 40, e13672. [Google Scholar] [CrossRef] [PubMed]
- Losacco, C.; Perillo, A. Particulate matter air pollution and respiratory impact on humans and animals. Environ. Sci. Pollut. Res. 2018, 25, 33901–33910. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- Liu, J.C.; Peng, R.D. Health effect of mixtures of ozone, nitrogen dioxide, and fine particulates in 85 US counties. Air Qual. Atmos. Health 2018, 11, 311–324. [Google Scholar] [CrossRef]
- Olstrup, H.; Johansson, C.; Forsberg, B.; Åström, C. Association between mortality and short-term exposure to particles, ozone and nitrogen dioxide in Stockholm, Sweden. Int. J. Environ. Res. Public Health 2019, 16, 1028. [Google Scholar] [CrossRef] [Green Version]
- Ritz, B.; Hoffmann, B.; Peters, A. The effects of fine dust, ozone, and nitrogen dioxide on health. Dtsch. Ärzteblatt Int. 2019, 116, 881. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Air Quality in Europe-2019 Report. No 10/2019. 2019. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 12 March 2021).
- United States Environmental Protection Agency (EPA). Report: EPA’s FYs 2020–2021 Top Management Challenges. No 20-N-0231. 2020. Available online: https://www.epa.gov/sites/production/files/2020-07/documents/_epaoig_20200721-20-n-0231_0.pdf (accessed on 12 March 2021).
- Kuklinska, K.; Wolska, L.; Namieśnik, J. Air quality policy in the U.S. and the EU—A review. Atmos. Pollut. Res. 2015, 6, 129–137. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Europe’s Urban Air Quality-Re-Assessing Implementation Challenges in Cities. Nº24-2018. 2018. Available online: https://www.eea.europa.eu/publications/europes-urban-air-quality (accessed on 12 March 2021).
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; Rebeiro-Hargrave, A.; Hussein, T.; Petaja, T.; et al. Toward massive scale air quality monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [Google Scholar] [CrossRef]
- Kaivonen, S.; Ngai, E.C.H. Real-time air pollution monitoring with sensors on city bus. Digit. Commun. Netw. 2020, 6, 23–30. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A.; Osammor, O. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities—A case study in Sheffield. Environ. Monit. Assess. 2019, 191, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryech, I.; Ben-Aboud, Y.; Guermah, B.; Sbihi, N.; Ghogho, M.; Kobbane, A. MoreAir: A Low-Cost Urban Air Pollution Monitoring System. Sensors 2020, 20, 998. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier-Oxandale, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Technol. 2014, 7, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Frey, H.C.; Fung, J.C.; Ning, Z.; Qu, H.; Lo, H.K.; Lau, A.K. PRAISE-HK: A personalized real-time air quality informatics system for citizen participation in exposure and health risk management. Sustain. Cities Soc. 2020, 54, 101986. [Google Scholar] [CrossRef]
- Wesseling, J.; de Ruiter, H.; Blokhuis, C.; Drukker, D.; Weijers, E.; Volten, H.; Tielemans, E. Development and implementation of a platform for public information on air quality, sensor measurements, and citizen science. Atmosphere 2019, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Using A Low-Cost Sensor Array and Machine Learning Techniques to Detect Complex Pollutant Mixtures and Identify Likely Sources. Sensors 2019, 19, 3723. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Burgués, J.; Marco, S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors. Sensors 2018, 18, 339. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.; Burgués, J.; Marco, S. Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution. Sensors 2019, 19, 4029. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications Europe’s Urban Air Quality. Available online: https://library.wmo.int/doc_num.php?explnum_id=9881 (accessed on 12 March 2021).
- Masson, N.; Piedrahita, R.; Hannigan, M. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sens. Actuators B Chem. 2014, 208, 339–345. [Google Scholar] [CrossRef]
- Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef] [Green Version]
- Afshar-Mohajer, N.; Zuidema, C.; Sousan, S.; Hallett, L.; Tatum, M.; Rule, A.M.; Thomas, G.; Peters, T.M.; Koehler, K. Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J. Occup. Environ. Hyg. 2018, 15, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sens. Actuators B Chem. 2017, 239, 390–396. [Google Scholar] [CrossRef]
- Leidinger, M.; Schultealbert, C.; Neu, J.; Schütze, A.; Sauerwald, T. Characterization and calibration of gas sensor systems at ppb level—A versatile test gas generation system. Meas. Sci. Technol. 2017, 29, 015901. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.C.; Westerdahl, D.; Louie, P.K.K. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhu, X.; Chen, C.; Ge, Y.; Wang, W.; Zhao, Z.; Cai, J.; Kan, H. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111958. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; Di Francia, G. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750–757. [Google Scholar] [CrossRef]
- Peterson, P.J.D.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef] [PubMed]
- Berry, W.D.; Feldman, S. Multiple Regression in Practice (Sage University Paper Series, Quantitative Applications in the Social Sciences); Sage: Beverly Hills, CA, USA, 1985. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-0-470-54281-1. [Google Scholar]
- Yan, X.; Su, X.G. Linear Regression Analysis: Theory and Computing; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 28 May 2021).
- Official Journal of the European Union. Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. June 2008. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:en:PDF (accessed on 28 May 2021).
- World Meteorological Organization. Global Air Quality Guidelines. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/activities/update-of-who-global-air-quality-guidelines (accessed on 28 May 2021).
- Technical Data MQ-7 Gas Sensor. Available online: https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-7.pdf (accessed on 12 March 2021).
- MQ-131 Ozone Gas Sensor. Available online: https://aqicn.org/air/view/sensor/spec/o3.winsen-mq131.pdf (accessed on 12 March 2021).
- Data Sheet MiCS-2714. Available online: https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf (accessed on 12 March 2021).
- Sales-Lérida, D.; Sales-Márquez, D.; Hernandez-Molina, R.; Cueto-Ancela, J.L. Sistema de Telemedición de Calidad Del Aire Para la Visualización en Tiempo Real de una Red de Dispositivos Compactos. Spain Patent Number ES2638715, 16 August 2018. [Google Scholar]
- Visor de Calidad del Aire. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/visor/default.aspx (accessed on 12 March 2021).
- Informes Diarios de Calidad del Aire. Available online: http://www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.7e1cf46ddf59bb227a9ebe205510e1ca/?vgnextoid=7e612e07c3dc4010VgnVCM1000000624e50aRCRD&vgnextchannel=910f230af77e4310VgnVCM1000001325e50aRCRD (accessed on 12 March 2021).
- How to Perform Multiple Linear Regression in R. Available online: https://www.statology.org/multiple-linear-regression-r/ (accessed on 3 July 2021).
- A Complete Guide to Stepwise Regression in R. Available online: https://www.statology.org/stepwise-regression-r/ (accessed on 3 July 2021).
Qualitative Index | SO2 μg/m3 (24 h Average Value) | O3 μg/m3 (8 h Average Value) | NO2 μg/m3 (1 h Average Value) | CO μg/m3 (8 h Measured Value) | PM10 μg/m3 (24 h Measured Value) |
---|---|---|---|---|---|
Good | 0–63 | 0–60 | 0–100 | 0–5000 | 0–25 |
Moderate | 63–125 | 60–120 | 100–200 | 5000–10,000 | 25–50 |
Poor | 125–187 | 120–180 | 200–300 | 10,000–15,000 | 50–75 |
Very Poor | >187 | >180 | >300 | >15,000 | >75 |
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | −406.43899 | 54.43049 | −7.467 | 3.85 × 10−13 |
α1 | 0.66569 | 0.07036 | 9.461 | <2 × 10−16 |
α2 | 0.09424 | 0.02109 | 4.468 | 9.82 × 10−6 |
α3 | −0.56357 | 0.03175 | −17.752 | <2 × 10−16 |
α4 | −1.01488 | 0.31333 | −3.239 | 0.00128 |
α5 | −0.44478 | 0.07294 | −6.098 | 2.20 × 10−9 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−31.110 | −5.171 | 1.232 | 6.224 | 30.671 |
R-squared: 0.7508 |
Coefficients | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
α0 | −413.68158 | 69.18787 | −5.979 | 5.81 × 10−9 |
α1 | 0.69410 | 0.08865 | 7.830 | 6.68 × 10−14 |
α2 | 0.10644 | 0.02793 | 3.812 | 0.000165 |
α3 | −0.61144 | 0.04218 | −14.497 | <2 × 10−16 |
α4 | −1.99947 | 0.42228 | −4.735 | 3.25 × 10−6 |
α5 | −0.43273 | 0.08206 | −5.274 | 2.42 × 10−7 |
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−32.143 | −4.406 | 1.603 | 5.626 | 19.206 |
R-squared: 0.7127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales-Lérida, D.; Bello, A.J.; Sánchez-Alzola, A.; Martínez-Jiménez, P.M. An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis. Sensors 2021, 21, 4781. https://doi.org/10.3390/s21144781
Sales-Lérida D, Bello AJ, Sánchez-Alzola A, Martínez-Jiménez PM. An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis. Sensors. 2021; 21(14):4781. https://doi.org/10.3390/s21144781
Chicago/Turabian StyleSales-Lérida, Diego, Alfonso J. Bello, Alberto Sánchez-Alzola, and Pedro Manuel Martínez-Jiménez. 2021. "An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis" Sensors 21, no. 14: 4781. https://doi.org/10.3390/s21144781
APA StyleSales-Lérida, D., Bello, A. J., Sánchez-Alzola, A., & Martínez-Jiménez, P. M. (2021). An Approximation for Metal-Oxide Sensor Calibration for Air Quality Monitoring Using Multivariable Statistical Analysis. Sensors, 21(14), 4781. https://doi.org/10.3390/s21144781