Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements
Abstract
:1. Introduction
2. State of the Art and Rationale of the Present Work
3. Theoretical Background
4. Materials and Methods
4.1. Experimental Setup
4.2. Methodological Procedures and Description of the Experiments
5. Experimental Results
5.1. Preliminary Calibration Procedure
5.2. Comparison of Results Obtained from the Specimen and from the Beam
5.3. Procedure for On-Site monitoring
5.4. TDR Measurements for On-Site Monitoring
5.5. Mechanical Tests on the Beam
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Fitting
References
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J. Construction 4.0: A literature review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Lekan, A.; Clinton, A.; James, O. The disruptive adaptations of construction 4.0 and industry 4.0 as a pathway to a sustainable innovation and inclusive industrial technological development. Buildings 2021, 11, 79. [Google Scholar] [CrossRef]
- Turner, C.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2021, 17, 746–756. [Google Scholar] [CrossRef]
- Cataldo, A.; De Benedetto, E.; Cannazza, G. Hydration monitoring and moisture control of cement-based samples through embedded wire-like sensing elements. IEEE Sens. J. 2015, 15, 1208–1215. [Google Scholar] [CrossRef]
- Suchorab, Z.; Widomski, M.; Łagód, G.; Barnat-Hunek, D.; Majerek, D. A noninvasive TDR sensor to measure the moisture content of rigid porous materials. Sensors 2018, 18, 3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amore, P.; Tedesco, A. Technologies for the implementation of a security system on rail transportation infrastructures. Top. Saf. Risk Reliab. Qual. 2015, 27, 123–141. [Google Scholar] [CrossRef]
- Tedesco, A.; Gallo, M.; Tufano, A. A preliminary discussion of measurement and networking issues in cyber physical systems for industrial manufacturing. In Proceedings of the 2017 IEEE International Workshop on Measurement and Networking, M & N 2017, Naples, Italy, 27–29 September 2017. [Google Scholar] [CrossRef]
- Grazioso, S.; Tedesco, A.; Selvaggio, M.; Debei, S.; Chiodini, S. Towards the development of a cyber-physical measurement system (CPMS): Case study of a bioinspired soft growing robot for remote measurement and monitoring applications. Acta IMEKO 2021, 10, 103–109. [Google Scholar] [CrossRef]
- Carino, N.J. Nondestructive test methods. Concr. Constr. Eng. Handb. 1997, 1, 19. [Google Scholar]
- Craveiro, F.; Duarte, J.; Bartolo, H.; Bartolo, P. Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Autom. Constr. 2019, 103, 251–267. [Google Scholar] [CrossRef]
- Amghar, B.; Mansoutre, S.; Colin, J.; Florence, C.; De Morais Brito, A. TSmart concrete: An illustration through a smart concrete chess game of potential applications in construction 4.0. Eng. Res. Express 2021, 3, 025007. [Google Scholar] [CrossRef]
- Sousa, H.; Bento, J.; Figueiras, J. Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data. Eng. Struct. 2013, 52, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Schellhammer, J.; Delatte, N.; Bosela, P. Another look at the collapse of skyline plaza at Bailey’s Crossroads, Virginia. J. Perform. Constr. Facil. 2013, 27, 354–361. [Google Scholar] [CrossRef] [Green Version]
- King, S.; Delatte, N.J. Collapse of 2000 commonwealth avenue: Punching shear case study. J. Perform. Constr. Facil. 2004, 18, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Bukenya, P.; Moyo, P.; Beushausen, H.; Oosthuizen, C. Health monitoring of concrete dams: A literature review. J. Civ. Struct. Health Monit. 2014, 4, 235–244. [Google Scholar] [CrossRef]
- Helal, J.; Sofi, M.; Mendis, P. Non-destructive testing of concrete: A review of methods. Electron. J. Struct. Eng. 2015, 14, 97–105. [Google Scholar]
- Bungey, J.H.; Grantham, M.G. Testing of Concrete in Structures; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Xu, Q.; Ruiz, J.; Hu, J.; Wang, K.; Rasmussen, R. Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests. Thermochim. Acta 2011, 512, 76–85. [Google Scholar] [CrossRef]
- García De Lomas, M.; Sánchez De Rojas, M.; Frías, M. Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. J. Therm. Anal. Calorim. 2007, 90, 443–447. [Google Scholar] [CrossRef]
- Černý, R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement 2009, 42, 329–336. [Google Scholar] [CrossRef]
- Brandštetr, J.; Polcer, J.; Krátký, J.; Holešinský, R.; Havlica, J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behavior of cementitious systems. Cem. Concr. Res. 2001, 31, 941–947. [Google Scholar] [CrossRef]
- Rajesh, M.; Sheeba, M.; Nampoori, V. POF based smart sensor for studying the setting dynamics of cement paste. J. Phys. Conf. Ser. 2007, 85. [Google Scholar] [CrossRef]
- Van Den Abeele, K.; Desadeleer, W.; De Schutter, G.; Wevers, M. Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics. Cem. Concr. Res. 2009, 39, 426–432. [Google Scholar] [CrossRef]
- Kwon, S.J.; Feng, M.; Park, S. Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar. NDT Int. 2010, 43, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.; Akgol, O.; Sevim, U.K.; Karaaslan, M.; Demirci, M.; Unal, E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr. Build. Mater. 2018, 165, 58–63. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Zhou, L. Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar. Cem. Concr. Compos. 2016, 74, 174–181. [Google Scholar] [CrossRef]
- Ong, J.; Tan, E.; Pereles, B.; Ong, K. A Wireless, Passive Embedded Sensor for Real-Time Monitoring of Water Content in Civil Engineering Materials. IEEE Sens. J. 2008, 8, 2053–2058. [Google Scholar] [CrossRef]
- Nakayama, S. Development of a microwave moisture sensor for aggregates. Meas. Sci. Technol. 1995, 6, 429–431. [Google Scholar] [CrossRef]
- Walczak, A.; Lipiński, M.; Janik, G. Application of the tdr sensor and the parameters of injection irrigation for the estimation of soil evaporation intensity. Sensors 2021, 21, 309. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Yu, J.D.; Byun, Y.H. Horizontally elongated time domain reflectometry system for evaluation of soil moisture distribution. Sensors 2020, 20, 6834. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yoon, H.K. Hydraulic conductivity of saturated soil medium through time-domain reflectometry. Sensors 2020, 20, 7001. [Google Scholar] [CrossRef] [PubMed]
- Piuzzi, E.; Cataldo, A.; Cannazza, G.; De Benedetto, E. An improved reflectometric method for soil moisture measurement exploiting an innovative triple-short calibration. IEEE Trans. Instrum. Meas. 2010, 59, 2747–2754. [Google Scholar] [CrossRef]
- Cataldo, A.; De Benedetto, E.; Cannazza, G.; Masciullo, A.; Giaquinto, N.; D’Aucelli, G.; Costantino, N.; De Leo, A.; Miraglia, M. Recent advances in the TDR-based leak detection system for pipeline inspection. Measurement 2017, 98, 347–354. [Google Scholar] [CrossRef]
- Cataldo, A.; De Benedetto, E.; Masciullo, A.; Cannazza, G. A new measurement algorithm for TDR-based localization of large dielectric permittivity variations in long-distance cable systems. Measurement 2021, 174. [Google Scholar] [CrossRef]
- Giaquinto, N.; D’Aucelli, G.; De Benedetto, E.; Cannazza, G.; Cataldo, A.; Piuzzi, E.; Masciullo, A. Criteria for Automated Estimation of Time of Flight in TDR Analysis. IEEE Trans. Instrum. Meas. 2016, 65, 1215–1224. [Google Scholar] [CrossRef]
- Cataldo, A.; Monti, G.; De Benedetto, E.; Cannazza, G.; Tarricone, L.; Catarinucci, L. Assessment of a TD-based method for characterization of antennas. IEEE Trans. Instrum. Meas. 2009, 58, 1412–1419. [Google Scholar] [CrossRef]
- Applying Error Correction to Network Analyzer Measurements: Application Note 1287-3; Agilent Technologies: Santa Clara, CA, USA, 2002.
- Attivissimo, F.; Cataldo, A.; Fabbiano, L.; Giaquinto, N. Systematic errors and measurement uncertainty: An experimental approach. Measurement 2011, 44, 1781–1789. [Google Scholar] [CrossRef]
Day | [%] | Day | [%] | Day | [%] | Day | [%] |
---|---|---|---|---|---|---|---|
1 | 12.52 | 2 | 10.55 | 3 | 9.67 | 4 | 9.25 |
6 | 8.78 | 8 | 8.35 | 9 | 8.14 | 10 | 8.10 |
11 | 7.92 | 12 | 7.85 | 15 | 7.45 | 16 | 7.42 |
17 | 7.35 | 18 | 7.30 | 19 | 7.21 | 22 | 6.79 |
23 | 6.75 | 24 | 6.69 | 25 | 6.57 | 29 | 6.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, A.; Schiavoni, R.; Masciullo, A.; Cannazza, G.; Micelli, F.; De Benedetto, E. Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements. Sensors 2021, 21, 4872. https://doi.org/10.3390/s21144872
Cataldo A, Schiavoni R, Masciullo A, Cannazza G, Micelli F, De Benedetto E. Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements. Sensors. 2021; 21(14):4872. https://doi.org/10.3390/s21144872
Chicago/Turabian StyleCataldo, Andrea, Raissa Schiavoni, Antonio Masciullo, Giuseppe Cannazza, Francesco Micelli, and Egidio De Benedetto. 2021. "Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements" Sensors 21, no. 14: 4872. https://doi.org/10.3390/s21144872
APA StyleCataldo, A., Schiavoni, R., Masciullo, A., Cannazza, G., Micelli, F., & De Benedetto, E. (2021). Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements. Sensors, 21(14), 4872. https://doi.org/10.3390/s21144872