Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication Channels
Abstract
:1. Introduction
- The incorporation of network availability information (Fiedler value) into the decision-making process of each agent in a decentralized manner.
- Signal disturbances in wireless communication protocols that limit the use of distributed algorithms in networked systems.
- A multi-agent system that is able to dynamically change the number of collaboration agents in a decentralized manner.
2. Literature Overview
3. Basic Notations
3.1. Graph Theory Notations
3.2. Decentralized Algorithm for Algebraic Connectivity Estimation
4. Theoretical Formulation
4.1. Multiple Communication Channels
4.2. Dynamic Network
- .
Algorithm 1: Removing a critical agent from the system. |
- Add agent m into the set of neighbours .
- Enlarge the identification vector with the address of the new agent m.
- Enlarge the adjacency matrix with a row and column that correspond to the new agent m.
- Agent l compares the size of the identification vectors with each agent in its set of neighbours .
- If the size of the agent’s l identification vector is lower than the size of some agent from its neighbourhood, then the agent l should determine the address of new agent m.
- If the degree of the new agent m is greater than the required threshold, then the adjacency matrix and identification vector of agent l are enlarged with values that correspond to the new agent.
Algorithm 2: Add a new agent to the system. |
5. Results
5.1. Multi-Channel Communication
- ;
- .
5.2. Time Variable Multi-Agent System
5.3. Experimental Results
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, S.; Bullo, F.; Cortes, J.; Frazzoli, E. On Synchronous Robotic Networks—Part I: Models, Tasks, and Complexity. IEEE Trans. Autom. Control 2007, 52, 2199–2213. [Google Scholar] [CrossRef]
- Lundgren, H.; Nordstrom, E.; Tschudin, C. The gray zone problem in IEEE 802.11b based ad hoc networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2002, 6, 104–105. [Google Scholar] [CrossRef]
- Derakhshan, F.; Yousefi, S. A review on the applications of multiagent systems in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771985076. [Google Scholar] [CrossRef]
- Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control 2006, 51, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 2013, 9, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Griparić, K.; Haus, T.; Miklić, D.; Polić, M.; Bogdan, S. A robotic system for researching social integration in honeybees. PLoS ONE 2017, 12, e0181977. [Google Scholar] [CrossRef] [Green Version]
- Gazi, V. Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans. Robot. 2005, 21, 1208–1214. [Google Scholar] [CrossRef]
- Abdullah, J.M.; Ahmed, T. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. IEEE Access 2019, 7, 43473–43486. [Google Scholar] [CrossRef]
- Liang, H.; Fu, Y.; Kang, F.; Gao, J.; Qiang, N. A Behavior-Driven Coordination Control Framework for Target Hunting by UUV Intelligent Swarm. IEEE Access 2020, 8, 4838–4859. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Fax, J.; Murray, R. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Fernando, C.; Detweiler, C.; Bradley, J. Co-Regulated Information Consensus with Delays for Multi-Agent UAS*. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju Island, South Korea, 14–18 December 2020. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; Qin, J.; Herrera, F. Balance Dynamic Clustering Analysis and Consensus Reaching Process With Consensus Evolution Networks in Large-Scale Group Decision Making. IEEE Trans. Fuzzy Syst. 2021, 29, 357–371. [Google Scholar] [CrossRef]
- Ganguli, A.; Cortes, J.; Bullo, F. Multirobot Rendezvous With Visibility Sensors in Nonconvex Environments. IEEE Trans. Robot. 2009, 25, 340–352. [Google Scholar] [CrossRef]
- Krug, R.; Stoyanov, T.; Tincani, V.; Andreasson, H.; Mosberger, R.; Fantoni, G.; Lilienthal, A.J. The Next Step in Robot Commissioning: Autonomous Picking and Palletizing. IEEE Robot. Autom. Lett. 2016, 1, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Correll, N.; Martinoli, A. Multirobot inspection of industrial machinery. IEEE Robot. Autom. Mag. 2009, 16, 99–102. [Google Scholar] [CrossRef]
- Toussaint, M.; Lopes, M. Multi-bound tree search for logic-geometric programming in cooperative manipulation domains. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4044–4051. [Google Scholar]
- Ha, J.S.; Driess, D.; Toussaint, M. A Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
- Bonnet, F.; Defago, X. Exploration and Surveillance in Multi-robots Networks. In Proceedings of the 2011 Second International Conference on Networking and Computing, Valencia, Spain, 9–13 May 2011; pp. 342–344. [Google Scholar] [CrossRef]
- Botts, C.H.; Spall, J.C.; Newman, A.J. Multi-agent surveillance and tracking using cyclic stochastic gradient. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016. [Google Scholar] [CrossRef]
- Scaramuzza, D.; Achtelik, M.C.; Doitsidis, L.; Friedrich, F.; Kosmatopoulos, E.; Martinelli, A.; Achtelik, M.W.; Chli, M.; Chatzichristofis, S.; Kneip, L.; et al. Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments. IEEE Robot. Autom. Mag. 2014, 21, 26–40. [Google Scholar] [CrossRef]
- Gribovskiy, A.; Halloy, J.; Deneubourg, J.L.; Bleuler, H.; Mondada, F. Towards mixed societies of chickens and robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 18–22 October 2010; pp. 4722–4728. [Google Scholar]
- Bonnet, F.; Cazenille, L.; Séguret, A.; Gribovskiy, A.; Collignon, B.; Halloy, J.; Mondada, F. Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies. Int. J. Adv. Robot. Syst. 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Moura, J. Distributed Consensus Algorithms in Sensor Networks With Imperfect Communication: Link Failures and Channel Noise. IEEE Trans. Signal Process. 2009, 57, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Guo, Y.; Liu, H.; Chen, Y.; Wang, Z.; Mitola, J. Distributed Consensus-Based Weight Design for Cooperative Spectrum Sensing. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 54–64. [Google Scholar] [CrossRef]
- Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A. Wireless Sensor Networks for Condition Monitoring in the Railway Industry: A Survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [Google Scholar] [CrossRef]
- Leonard, N.E.; Paley, D.a.; Lekien, F.; Sepulchre, R.; Fratantoni, D.M.; Davis, R.E. Collective Motion, Sensor Networks, and Ocean Sampling Collective Motion, Sensor Networks, and Ocean Sampling. Proc. IEEE 2007, 95, 48–74. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Xie, L.; Xu, J.; Xu, Z. Multi-Agent Cooperative Target Search. Sensors 2014, 14, 9408–9428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbanas, B.; Petrovic, T.; Bogdan, S. Consensus Protocol for Underwater Multi-Robot System Using Scheduled Acoustic Communication. In Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, K.; Jiang, Y.; Niu, S.; Yang, T.; Song, H. Communication Aware UAV Swarm Surveillance Based on Hierarchical Architecture. Drones 2021, 5, 33. [Google Scholar] [CrossRef]
- González-Briones, A.; Prieto, J.; Prieta, F.D.L.; Herrera-Viedma, E.; Corchado, J. Energy Optimization Using a Case-Based Reasoning Strategy. Sensors 2018, 18, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, D.; Dragana, C.; Stoican, F.; Ichim, L.; Stamatescu, G. A Collaborative UAV-WSN Network for Monitoring Large Areas. Sensors 2018, 18, 4202. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cao, X.; Cheng, P.; Xiao, Y.; Sun, Y. Distributed Collaborative Control for Industrial Automation With Wireless Sensor and Actuator Networks. IEEE Trans. Ind. Electron. 2010, 57, 4219–4230. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.Z.; Huang, J.; Zhang, J.; Yu, L.; Nie, Z.; Cumming, D.R.S. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Felici-Castell, S.; Navarro, E.; Pérez-Solano, J.; Segura-García, J.; García-Pineda, M. Practical Considerations in the Implementation of Collaborative Beamforming on Wireless Sensor Networks. Sensors 2017, 17, 237. [Google Scholar] [CrossRef] [Green Version]
- Mir, Z.H.; Ko, Y.B. Collaborative Topology Control for Many-to-One Communications in Wireless Sensor Networks. IEEE Access 2017, 5, 15927–15941. [Google Scholar] [CrossRef]
- Tian, Y.; Ekici, E. Cross-Layer Collaborative In-Network Processing in Multihop Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2007, 6, 297–310. [Google Scholar] [CrossRef]
- Ganeriwal, S.; Tsigkogiannis, I.; Shim, H.; Tsiatsis, V.; Srivastava, M.; Ganesan, D. Estimating Clock Uncertainty for Efficient Duty-Cycling in Sensor Networks. IEEE/ACM Trans. Netw. 2009, 17, 843–856. [Google Scholar] [CrossRef]
- Elsharief, M.; El-Gawad, M.A.A.; Kim, H. Low-Power Scheduling for Time Synchronization Protocols in A Wireless Sensor Networks. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Gasparri, A.; Sabattini, L.; Ulivi, G. Bounded Control Law for Global Connectivity Maintenance in Cooperative Multirobot Systems. IEEE Trans. Robot. 2017, 33, 700–717. [Google Scholar] [CrossRef]
- Khateri, K.; Pourgholi, M.; Montazeri, M.; Sabattini, L. A Comparison Between Decentralized Local and Global Methods for Connectivity Maintenance of Multi-Robot Networks. IEEE Robot. Autom. Lett. 2019, 4, 633–640. [Google Scholar] [CrossRef]
- Capelli, B.; Sabattini, L. Connectivity Maintenance: Global and Optimized approach through Control Barrier Functions. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
- Chan, K.; Swami, A.; Zhao, Q.; Scaglione, A. Consensus algorithms over fading channels. In Proceedings of the 2010-Milcom 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010; pp. 549–554. [Google Scholar]
- Scutari, G.; Barbarossa, S. Distributed Consensus Over Wireless Sensor Networks Affected by Multipath Fading. IEEE Trans. Signal Process. 2008, 56, 4100–4106. [Google Scholar] [CrossRef] [Green Version]
- Mostofi, Y.; Gonzalez-Ruiz, A.; Gaffarkhah, A.; Li, D. Characterization and modeling of wireless channels for networked robotic and control systems—A comprehensive overview. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 4849–4854. [Google Scholar]
- Fink, J.; Ribeiro, A.; Kumar, V. Robust Control of Mobility and Communications in Autonomous Robot Teams. IEEE Access 2013, 1, 290–309. [Google Scholar] [CrossRef]
- Khodayi-mehr, R.; Kantaros, Y.; Zavlanos, M.M. Distributed State Estimation Using Intermittently Connected Robot Networks. IEEE Trans. Robot. 2019, 35, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Godsil, C.; Royle, G. Algbraic Graph Theory; Springer: Berlin, Germany, 2001. [Google Scholar]
- Haus, T.; Palunko, I.; Tolić, D.; Bogdan, S.; Lewis, F.L. Decentralized trust-based self-organizing cooperative control. In Proceedings of the European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 1205–1210. [Google Scholar]
- Haus, T.; Palunko, I.; Tolić, D.; Bogdan, S.; Lewis, F.L.; Mikulski, D.G. Trust-based self-organising network control. IET Control Theory Appl. 2014, 8, 2126–2135. [Google Scholar] [CrossRef]
- Mariano, P.; Mills, R.; Luis, C.; Miklić, D.; Bogdan, S. Assisi Playground: A simulation tool for collective bio-hybrid system research. In Proceedings of the 29th Eurpean Simulation and Modelling Conference-ESM, Leicester, UK, 26–28 October 2015. [Google Scholar]
- Stump, E.; Jadbabaie, A.; Kumar, V. Connectivity management in mobile robot teams. In Proceedings of the International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Mox, D.; Calvo-Fullana, M.; Gerasimenko, M.; Fink, J.; Kumar, V.; Ribeiro, A. Mobile Wireless Network Infrastructure on Demand. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
t [s] | |||
---|---|---|---|
Channel A () | 0 | 0.3 | 0.3 |
Channel B () | 0 | 0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griparić, K. Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication Channels. Sensors 2021, 21, 5014. https://doi.org/10.3390/s21155014
Griparić K. Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication Channels. Sensors. 2021; 21(15):5014. https://doi.org/10.3390/s21155014
Chicago/Turabian StyleGriparić, Karlo. 2021. "Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication Channels" Sensors 21, no. 15: 5014. https://doi.org/10.3390/s21155014
APA StyleGriparić, K. (2021). Algebraic Connectivity Control in Distributed Networks by Using Multiple Communication Channels. Sensors, 21(15), 5014. https://doi.org/10.3390/s21155014