An Action Classification Method for Forklift Monitoring in Industry 4.0 Scenarios
Abstract
:1. Introduction
2. RFID Gates
3. Materials and Methods
3.1. The I-READ4.0 System Architecture
3.2. The UHF-RFID Smart Gate
- An Impinj Speedway Revolution R420 UHF-RFID reader;
- A circularly-polarized (CP) CAEN WANTENNAX019 antenna;
- A linearly-polarized (LP) CAEN WANTENNAX007 antenna;
- Two coaxial cables;
- An ethernet cable to connect the reader to the Event Server;
- A power supply for the reader.
3.3. Signal Model
3.4. RFID Gate with Antenna in Symmetrical Configuration
3.5. RFID Gate with Asymmetrical Antenna Deployment and Action Classification Method
4. Experimental Analysis
4.1. Experimental Results
4.2. Discussion
4.3. Comparison with the State-of-the-Art
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Block Chain |
COTS | commercial-off-the-shelf |
CP | Circular Polarization |
CPS | Cyber-Physical System |
CV | Computer Vision |
EPC | Electronic Product Code |
HPBW | Half-Power Beamwidth |
IoT | Internet of Things |
LGV | Laser-Guided Vehicle |
LP | Linear Polarization |
LSTM | Long Short-Term Memory |
NFC | Near-Field Communication |
NN | neural networks |
RFID | Radio Frequency IDentification |
RNN | Recurrent Neural Network |
RSSI | Received Signal Strength Indicator |
SSCC | Serial Shipping Container Code |
UHF | Ultra-High Frequency |
WMS | Warehouse Management System |
WSN | Wireless Sensor Networks |
References
- Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE Access 2018, 6, 78238–78259. [Google Scholar] [CrossRef]
- Kim, B.H.; Cho, J.H. A Study on Modular Smart Plant Factory Using Morphological Image Processing. Electronics 2020, 9, 1661. [Google Scholar] [CrossRef]
- Piardi, L.; Kalempa, V.C.; Limeira, M.; de Oliveira, A.S.; Leitão, P. ARENA—Augmented Reality to Enhanced Experimentation in Smart Warehouses. Sensors 2019, 19, 4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Cao, J.; Yang, Y.; Jiang, S. CPS-Based Smart Warehouse for Industry 4.0: A Survey of the Underlying Technologies. Computers 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Saldivar, A.A.F.; Li, Y.; Chen, W.; Zhan, Z.; Zhang, J.; Chen, L.Y. Industry 4.0 with cyber-physical integration: A design and manufacture perspective. In Proceedings of the 2015 21st International Conference on Automation and Computing (ICAC), Glasgow, UK, 11–12 September 2015; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar] [CrossRef]
- Ponis, S.T.; Efthymiou, O.K. Cloud and IoT Applications in Material Handling Automation and Intralogistics. Logistics 2020, 4, 22. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, P.; Ma, Z.; Li, S.; Gao, X.; Wu, R.X.; Pan, L.; Shi, Y. Near-Field Communication Sensors. Sensors 2019, 19, 3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsi, M.; Latsou, C.; Erkoyuncu, J.A.; Morris, G. RFID Application in a Multi-Agent Cyber Physical Manufacturing System. J. Manuf. Mater. Process. 2020, 4, 103. [Google Scholar] [CrossRef]
- Lin, C.; Deng, D.; Chen, Z.; Chen, K. Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. IEEE Commun. Mag. 2016, 54, 46–52. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management. Sensors 2019, 19, 2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepa, P.; Motroni, A.; Congi, A.; Ferro, E.M.; Pesi, M.; Giorgi, G.; Buffi, A.; Lazzarotti, M.; Bellucci, J.; Galigani, S.; et al. I-READ 4.0: Internet-of-READers for an efficient asset management in large warehouses with high stock rotation index. In Proceedings of the 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 67–72. [Google Scholar] [CrossRef]
- Toivonen, A.S. Identifying and Controlling Stray Reads at RFID Gates. Master’s Thesis, Aalto University, Espoo, Finland, February 2012. [Google Scholar]
- Radio-Frequency Identity Protocols Generation-2 UHF RFID. GS1 Regulation. p. 152. Available online: https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf (accessed on 26 May 2021).
- Larionov, A.A.; Ivanov, R.E.; Vishnevsky, V.M. UHF RFID in Automatic Vehicle Identification: Analysis and Simulation. IEEE J. Radio Freq. Identif. 2017, 1, 3–12. [Google Scholar] [CrossRef]
- Stine, R.J.; Markman, H.L.; Markman, J.E. Shielded Portal for Multi-Reading RFID Tags Affixed to Articles. Patent US9760826B1, 12 September 2017. [Google Scholar]
- Shao, S.; Burkholder, R.J. Item-Level RFID Tag Location Sensing Utilizing Reader Antenna Spatial Diversity. IEEE Sens. J. 2013, 13, 3767–3774. [Google Scholar] [CrossRef]
- Keller, T.; Thiesse, F.; Kungl, J.; Fleisch, E. Using low-level reader data to detect false-positive RFID tag reads. In Proceedings of the 2010 Internet of Things (IOT), Tokyo, Japan, 29 November–1 December 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Keller, T.; Thiesse, F.; Ilic, A.; Fleisch, E. Decreasing false-positive RFID tag reads by improved portal antenna setups. In Proceedings of the 2012 3rd IEEE International Conference on the Internet of Things, Wuxi, China, 24–26 October 2012; pp. 99–106. [Google Scholar] [CrossRef]
- Morin, R.B. Method and system for controlling the traffic flow through an RFID directional portal. Patent US8487747B2, 16 July 2013. [Google Scholar]
- Goller, M.; Brandner, M.; Brasseur, G. A System Model for Cooperative RFID Readpoints. IEEE Trans. Instrum. Meas. 2014, 63, 2480–2487. [Google Scholar] [CrossRef]
- Oikawa, Y. Simulation evaluation of tag movement direction estimation methods in RFID gate systems. In Proceedings of the 2012 IEEE Radio and Wireless Symposium, Santa Clara, CA, USA, 15–18 January 2012; pp. 331–334. [Google Scholar] [CrossRef]
- Jian, Y.; Wei, Y.; Zhang, Y. Estimating the direction of motion based on active RFID. In Proceedings of the 5th International Conference on New Trends in Information Science and Service Science, Macao, China, 24–26 October 2011; Volume 2, pp. 286–290. [Google Scholar]
- Wu, J.; Zhu, M.; Xiao, B.; He, W. RFID Based Motion Direction Estimation in Gate Systems. In Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanjing, China, 9–11 May 2018; pp. 588–593. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Martinez, R.; Ramamurthy, S.; Leland, H.; Spiess, G.; Rao, K.V.S. Phase based spatial identification of UHF RFID tags. In Proceedings of the 2010 IEEE International Conference on RFID (IEEE RFID 2010), Orlando, FL, USA, 14–16 April 2010; pp. 102–109. [Google Scholar] [CrossRef]
- Buffi, A.; Tellini, B.; Motroni, A.; Nepa, P. A Phase-based Method for UHF RFID Gate Access Control. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 131–135. [Google Scholar] [CrossRef]
- Nikitin, P.V.; Spiess, G.N.; Leland, H.M.; Hingst, L.C.; Sherman, J.H. Utilization of Motion and Spatial Identification in Mobile RFID Interrogator. Patent US9047522B1, 2 June 2015. [Google Scholar]
- Buffi, A.; Nepa, P. The SARFID Technique for Discriminating Tagged Items Moving through a UHF-RFID Gate. IEEE Sens. J. 2017, 17, 2863–2870. [Google Scholar] [CrossRef]
- Zhang, Y.; Amin, M.G.; Kaushik, S. Localization and Tracking of Passive RFID Tags Based on Direction Estimation. Int. J. Antennas Propag. 2007, 2007, e17426. [Google Scholar] [CrossRef]
- Tesch, D.A.; Berz, E.L.; Hessel, F.P. RFID indoor localization based on Doppler effect. In Proceedings of the Sixteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 2–4 March 2015; pp. 556–560. [Google Scholar] [CrossRef]
- Geigl, F.; Moik, C.; Hinteregger, S.; Goller, M.; GmbH, D. Using Machine Learning and RFID Localization for Advanced Logistic Applications. In Proceedings of the 2017 IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017. [Google Scholar]
- Hauser, M.; Griebel, M.; Thiesse, F. A hidden Markov model for distinguishing between RFID-tagged objects in adjacent areas. In Proceedings of the 2017 IEEE International Conference on RFID, Phoenix, AZ, USA, 9–11 May 2017; pp. 167–173. [Google Scholar] [CrossRef]
- Buffi, A.; D’Andrea, E.; Lazzerini, B.; Nepa, P. UHF-RFID smart gate: Tag action classifier by artificial neural networks. In Proceedings of the 2017 IEEE International Conference on RFID Technology Application (RFID-TA), Warsaw, Poland, 20–22 September 2017; pp. 45–50. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Yoon, B.; Rhee, J. False Positive RFID Detection Using Classification Models. Appl. Sci. 2019, 9, 1154. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, Y.; Wang, K. Automatic detection of false positive RFID readings using machine learning algorithms. Expert Syst. Appl. 2018, 91, 442–451. [Google Scholar] [CrossRef]
- Eckstein, E.; Mazoki, G.T.; Richie, W.S., Jr. Article Identification and Tracking Using Electronic Shadows Created by RFID Tags. Patent US7081818B2, 25 July 2006. [Google Scholar]
- Alvarez-Narciandi, G.; Motroni, A.; Pino, M.R.; Buffi, A.; Nepa, P. A UHF-RFID Gate Control System Based on a Recurrent Neural Network. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2330–2334. [Google Scholar] [CrossRef] [Green Version]
- Álvarez Narciandi, G.; Motroni, A.; Pino, M.R.; Buffi, A.; Nepa, P. A UHF-RFID gate control system based on a Convolutional Neural Network. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 353–356. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Buffi, A.; Nepa, P.; Lombardini, F. A Phase-Based Technique for Localization of UHF-RFID Tags Moving on a Conveyor Belt: Performance Analysis and Test-Case Measurements. IEEE Sens. J. 2015, 15, 387–396. [Google Scholar] [CrossRef]
- Miesen, R.; Kirsch, F.; Vossiek, M. UHF RFID Localization Based on Synthetic Apertures. IEEE Trans. Autom. Sci. Eng. 2013, 10, 807–815. [Google Scholar] [CrossRef]
- Application Note-Low Level User Data Support. Available online: https://support.impinj.com/hc/en-us/articles/202755318-Application-Note-Low-Level-User-Data-Support (accessed on 12 June 2021).
- Radio Frequency Identification Equipment Operating in Theband 865 MHz to 868 MHz with Power Levels up to 2 W and in the Band 915 MHz to 921 MHz with Power Levels up to 4 W Harmonised Standard for Access to Radio Spectrum, ETSI ETSI EN 302 208 V3.2.0. Available online: https://www.etsi.org/deliver/etsi_en/302200_302299/302208/03.02.00_20/en_302208v030200a.pdf (accessed on 18 June 2021).
Trial | (s) | v (m/s) | (ms) | (cm) | m (rad/s) | |
---|---|---|---|---|---|---|
Successful IN | 85 | 3.7 | 1.57 | 44 | 7 | −13.28 |
Wrong IN | 72 | 3.3 | 0.98 | 46 | 4.5 | 0.1063 |
Successful OUT | 114 | 9.1 | 0.49 | 80 | 3.3 | 0.62 |
Wrong OUT | 76 | 5.7 | 0.77 | 74 | 5.7 | −0.97 |
Reference | Cost | Encumbrance | Scalability | Architecture |
---|---|---|---|---|
[16] | High | High | Low | Shielded Gate |
[18] | High | High | Low | Shielded Gate |
[19] | Medium–High | Medium–High | Low–Medium | Antenna Panels |
[22] | Low–Medium | Low–Medium | Medium–High | One reader and two antennas |
[23] | Low–Medium | Low–Medium | Medium–High | One reader and two antennas |
[24] | Low–Medium | Low–Medium | Medium–High | One reader and two antennas |
[26] | Low | Low | High | One reader and one antenna |
[28] | Low | Low | High | One reader and one antenna |
[33] | Low | Low | Medium | One reader and one antenna |
[37] | Low | Low–Medium | Medium | One reader, one antenna, reference tags |
[38] | Low | Low–Medium | Medium | One reader, one antenna, reference tags |
This paper | Low | Low | High | One reader and one antenna |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motroni, A.; Buffi, A.; Nepa, P.; Pesi, M.; Congi, A. An Action Classification Method for Forklift Monitoring in Industry 4.0 Scenarios. Sensors 2021, 21, 5183. https://doi.org/10.3390/s21155183
Motroni A, Buffi A, Nepa P, Pesi M, Congi A. An Action Classification Method for Forklift Monitoring in Industry 4.0 Scenarios. Sensors. 2021; 21(15):5183. https://doi.org/10.3390/s21155183
Chicago/Turabian StyleMotroni, Andrea, Alice Buffi, Paolo Nepa, Mario Pesi, and Antonio Congi. 2021. "An Action Classification Method for Forklift Monitoring in Industry 4.0 Scenarios" Sensors 21, no. 15: 5183. https://doi.org/10.3390/s21155183
APA StyleMotroni, A., Buffi, A., Nepa, P., Pesi, M., & Congi, A. (2021). An Action Classification Method for Forklift Monitoring in Industry 4.0 Scenarios. Sensors, 21(15), 5183. https://doi.org/10.3390/s21155183