Centered Multi-Task Generative Adversarial Network for Small Object Detection
Abstract
:1. Introduction
2. Related Work
2.1. Small Object Detection
2.2. Generative Adversarial Networks
3. Proposed Method
3.1. Network Architecture
3.1.1. Generator
3.1.2. Discriminator
3.2. Loss Function
3.2.1. Centered Content Loss
3.2.2. Adversarial Loss
3.2.3. Detection Loss
3.2.4. Objective Function
4. Experiments
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. Experimental Results
4.3.1. Performance of Super-Resolution
4.3.2. Performance of Small Object Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GAN | Generative adversarial network |
HR images | High-resolution images |
LR images | Low-resolution images |
SR images | Super-resolution images |
RE images | Restored images |
AG | Aaverage gradient |
STD | Standard deviation |
MI | Mutual information |
References
- Fischer, T.; Chang, H.J.; Demiris, Y. Rt-gene: Real-time eye gaze estimation in natural environments. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 334–352. [Google Scholar]
- Jaques, N.; Conati, C.; Harley, J.M.; Azevedo, R. Predicting affect from gaze data during interaction with an intelligent tutoring system. In International Conference on Intelligent Tutoring Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–38. [Google Scholar]
- Eid, M.A.; Giakoumidis, N.; El Saddik, A. A novel eye-gaze-controlled wheelchair system for navigating unknown environments: Case study with a person with ALS. IEEE Access 2016, 4, 558–573. [Google Scholar] [CrossRef]
- Georgiou, T.; Demiris, Y. Adaptive user modelling in car racing games using behavioural and physiological data. User Model. User Adapt. Interact. 2017, 27, 267–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Bai, Y.; Zhang, Y.; Ding, M.; Ghanem, B. Finding tiny faces in the wild with generative adversarial network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 21–30. [Google Scholar]
- Bai, Y.; Zhang, Y.; Ding, M.; Ghanem, B. Sod-mtgan: Small object detection via multi-task generative adversarial network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 206–221. [Google Scholar]
- Zhang, X.; He, Z.; Ma, Z.; Yang, Y. A Self-Labeling Feature Matching Algorithm for Instance Recognition on Multi-Sensor Images. Trans. Beijing Inst. Technol. 2021, 41, 558–568. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Liu, H.; Fan, K.; Ouyang, Q.; Li, N. Real-Time Small Drones Detection Based on Pruned YOLOv4. Sensors 2021, 21, 3374. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Tian, Y.; Zhang, Y.; Fu, Y.; Allebach, J.P.; Xu, C. Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3370–3379. [Google Scholar]
- Su, R.; Zhong, B.; Ji, J.; Ma, K.K. Single Image Super-Resolution Via A Progressive Mixture Model. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 508–512. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Feng, H.; Guo, J.; Xu, H.; Ge, S.S. SharpGAN: Dynamic Scene Deblurring Method for Smart Ship Based on Receptive Field Block and Generative Adversarial Networks. Sensors 2021, 21, 3641. [Google Scholar] [CrossRef] [PubMed]
- Marnerides, D.; Bashford-Rogers, T.; Debattista, K. Deep HDR Hallucination for Inverse Tone Mapping. Sensors 2021, 21, 4032. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2223–2232. [Google Scholar]
- Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual generative adversarial networks for small object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1222–1230. [Google Scholar]
- Pan, L.; Li, X.; Luo, S.; Wu, Z. Double-Channel GAN with Multi-Level Semantic Correlation for Event Detection. Trans. Beijing Inst. Technol. 2021, 41, 295–302. [Google Scholar]
- Truong, N.Q.; Lee, Y.W.; Owais, M.; Nguyen, D.T.; Batchuluun, G.; Pham, T.D.; Park, K.R. SlimDeblurGAN-based motion deblurring and marker detection for autonomous drone landing. Sensors 2020, 20, 3918. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dong, Z.; Xu, K.; Yang, Y.; Bao, H.; Xu, W.; Lau, R.W. Location-aware Single Image Reflection Removal. arXiv 2020, arXiv:2012.07131. [Google Scholar]
- Ma, C.; Rao, Y.; Cheng, Y.; Chen, C.; Lu, J.; Zhou, J. Structure-preserving super resolution with gradient guidance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7769–7778. [Google Scholar]
Layer | Conv | Res-Block x5 | Conv | De-Conv | De-Conv | Conv | Skip |
---|---|---|---|---|---|---|---|
Kernel Num. | 64 | 64 | 64 | 256 | 256 | 3 | 64 |
Kernel Size | 9 | 3 | 3 | 3 | 3 | 9 | 1 |
Stride | 1 | 1 | 1 | 2 | 2 | 1 | 1 |
Layer | Conv | Max-Pool | Layer 1 | Layer 2 | Layer 3 | RPN | Layer 4 | Avg-Pool | FC 1 | FC 2 | FC 3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Kernel Num. | 64 | - | 128 | 256 | 512 | 512 | 1024 | - | 2 | K + 1 | 4(K + 1) |
Kernel Size | 7 | 3 | 1 | 1 | 1 | 3 | 1 | 7 | - | - | - |
Stride | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | - | - | - |
CPU | Intel 10700K |
GPU | NVIDIA RTX3090 |
OS | Ubuntu20.04 |
Language | Python3.8 with PyTorch1.8.1(LTS) |
AG | STD | MI | |||||||||||||
Bilinear | Bicubic | SPSR | ESRGAN | CMTGAN | Bilinear | Bicubic | SPSR | ESRGAN | CMTGAN | Bilinear | Bicubic | SPSR | ESRGAN | CMTGAN | |
1 | 6.696 | 4.113 | 10.284 | 14.265 | 6.965 | 49.768 | 48.022 | 52.319 | 53.778 | 50.661 | 0.982 | 0.988 | 0.883 | 0.948 | 1.124 |
2 | 4.201 | 2.773 | 5.787 | 6.778 | 4.102 | 56.516 | 55.607 | 57.123 | 57.276 | 56.865 | 1.647 | 1.669 | 1.499 | 1.747 | 1.849 |
3 | 3.380 | 2.189 | 5.416 | 10.784 | 4.282 | 41.626 | 40.873 | 42.956 | 43.643 | 42.310 | 1.159 | 1.158 | 1.037 | 1.058 | 1.258 |
4 | 4.584 | 3.236 | 9.746 | 9.708 | 5.455 | 63.957 | 62.528 | 66.067 | 66.632 | 65.631 | 1.639 | 1.614 | 1.314 | 1.648 | 1.708 |
5 | 2.241 | 1.401 | 2.860 | 5.665 | 2.978 | 14.823 | 14.193 | 15.104 | 16.174 | 15.297 | 0.702 | 0.698 | 0.556 | 0.611 | 0.759 |
6 | 5.872 | 4.100 | 8.804 | 8.299 | 6.382 | 74.184 | 72.582 | 76.185 | 76.263 | 75.401 | 1.303 | 1.291 | 1.166 | 1.414 | 1.401 |
7 | 5.976 | 4.093 | 9.215 | 7.331 | 6.068 | 70.641 | 69.057 | 72.028 | 72.315 | 71.848 | 1.616 | 1.604 | 1.412 | 1.878 | 1.792 |
8 | 3.292 | 2.124 | 5.069 | 8.269 | 4.114 | 61.261 | 60.671 | 61.797 | 62.268 | 61.930 | 1.274 | 1.262 | 1.148 | 1.232 | 1.359 |
9 | 6.471 | 4.267 | 10.566 | 9.203 | 6.735 | 72.393 | 70.745 | 74.777 | 74.401 | 73.880 | 1.373 | 1.367 | 1.172 | 1.496 | 1.529 |
10 | 4.496 | 2.858 | 7.246 | 6.138 | 4.557 | 53.730 | 52.782 | 54.923 | 54.516 | 54.242 | 1.534 | 1.548 | 1.320 | 1.714 | 1.736 |
11 | 4.240 | 2.718 | 6.478 | 5.515 | 4.515 | 41.485 | 40.480 | 42.597 | 42.405 | 41.555 | 1.315 | 1.320 | 1.146 | 1.467 | 1.468 |
12 | 4.137 | 2.760 | 6.202 | 5.633 | 4.548 | 51.775 | 50.633 | 53.059 | 53.031 | 52.056 | 1.552 | 1.528 | 1.294 | 1.695 | 1.599 |
13 | 3.396 | 2.262 | 5.517 | 4.503 | 3.707 | 53.519 | 52.704 | 54.448 | 54.380 | 54.089 | 1.873 | 1.865 | 1.649 | 2.034 | 2.021 |
14 | 4.594 | 2.797 | 6.060 | 10.217 | 5.133 | 46.618 | 45.647 | 47.448 | 48.525 | 47.432 | 1.246 | 1.241 | 1.112 | 1.204 | 1.381 |
15 | 4.966 | 3.303 | 9.192 | 9.914 | 5.387 | 69.867 | 68.715 | 71.478 | 71.716 | 70.771 | 1.551 | 1.572 | 1.380 | 1.600 | 1.707 |
16 | 2.140 | 1.455 | 4.849 | 4.131 | 2.785 | 40.713 | 40.169 | 41.627 | 41.319 | 41.505 | 1.641 | 1.640 | 1.429 | 1.637 | 1.645 |
17 | 3.854 | 2.354 | 4.864 | 12.449 | 4.305 | 28.532 | 27.527 | 29.299 | 31.445 | 29.446 | 0.908 | 0.916 | 0.790 | 0.748 | 1.036 |
18 | 4.790 | 2.972 | 6.984 | 10.846 | 5.242 | 42.267 | 41.035 | 43.844 | 45.142 | 43.197 | 1.069 | 1.063 | 0.934 | 1.071 | 1.196 |
19 | 4.470 | 2.773 | 5.917 | 9.165 | 4.645 | 58.916 | 58.032 | 59.796 | 60.313 | 59.259 | 1.615 | 1.634 | 1.443 | 1.600 | 1.673 |
20 | 4.609 | 2.991 | 7.067 | 8.157 | 5.028 | 61.378 | 60.246 | 62.825 | 63.154 | 62.045 | 1.750 | 1.758 | 1.487 | 1.773 | 1.784 |
21 | 4.139 | 2.595 | 6.493 | 6.961 | 4.267 | 48.795 | 47.758 | 49.966 | 50.349 | 49.925 | 1.688 | 1.713 | 1.459 | 1.873 | 1.857 |
22 | 5.248 | 3.427 | 8.306 | 8.366 | 5.781 | 52.863 | 51.164 | 55.052 | 55.017 | 53.862 | 1.319 | 1.312 | 1.159 | 1.432 | 1.483 |
23 | 5.359 | 3.692 | 8.543 | 7.555 | 5.832 | 58.952 | 57.475 | 60.863 | 60.871 | 60.000 | 1.464 | 1.455 | 1.288 | 1.698 | 1.657 |
24 | 4.099 | 2.687 | 6.552 | 7.056 | 4.599 | 85.025 | 84.121 | 85.593 | 86.896 | 85.293 | 1.912 | 1.881 | 1.638 | 1.972 | 1.882 |
25 | 5.972 | 3.717 | 8.957 | 16.066 | 6.387 | 52.312 | 50.775 | 54.267 | 56.039 | 53.228 | 1.126 | 1.126 | 1.012 | 1.032 | 1.305 |
26 | 1.821 | 1.270 | 3.040 | 1.894 | 2.240 | 51.963 | 51.588 | 52.661 | 52.138 | 51.719 | 2.464 | 2.510 | 2.060 | 2.684 | 2.363 |
27 | 3.457 | 2.282 | 5.615 | 8.670 | 3.901 | 33.958 | 32.910 | 35.449 | 36.090 | 34.378 | 1.304 | 1.331 | 1.147 | 1.222 | 1.423 |
28 | 4.726 | 2.938 | 6.800 | 8.703 | 5.226 | 44.176 | 43.029 | 45.624 | 45.997 | 44.996 | 1.128 | 1.129 | 1.034 | 1.232 | 1.286 |
29 | 4.127 | 2.679 | 6.602 | 5.835 | 4.351 | 53.838 | 52.807 | 55.218 | 55.231 | 54.504 | 1.671 | 1.658 | 1.423 | 1.867 | 1.821 |
30 | 5.229 | 3.583 | 9.719 | 8.414 | 6.049 | 60.858 | 59.539 | 63.098 | 63.069 | 62.090 | 1.384 | 1.385 | 1.257 | 1.582 | 1.585 |
31 | 2.909 | 1.911 | 3.636 | 4.588 | 2.751 | 71.213 | 70.810 | 71.348 | 71.579 | 72.170 | 2.107 | 2.138 | 1.954 | 2.159 | 2.221 |
32 | 4.204 | 2.850 | 6.254 | 5.740 | 4.616 | 72.150 | 71.122 | 73.294 | 72.845 | 72.954 | 1.690 | 1.665 | 1.485 | 1.806 | 1.803 |
33 | 4.570 | 3.142 | 8.576 | 9.801 | 5.265 | 60.982 | 59.737 | 63.412 | 63.102 | 61.863 | 1.415 | 1.410 | 1.218 | 1.423 | 1.510 |
34 | 4.086 | 2.539 | 5.961 | 10.784 | 4.695 | 40.812 | 39.807 | 41.836 | 43.031 | 41.475 | 1.090 | 1.093 | 0.979 | 0.998 | 1.162 |
35 | 3.884 | 2.515 | 6.005 | 5.781 | 4.393 | 37.029 | 35.687 | 38.856 | 38.483 | 37.723 | 1.321 | 1.314 | 1.137 | 1.399 | 1.472 |
36 | 5.920 | 4.105 | 9.760 | 7.342 | 6.170 | 62.528 | 60.724 | 64.934 | 64.394 | 63.470 | 1.372 | 1.374 | 1.192 | 1.618 | 1.584 |
37 | 5.315 | 3.668 | 10.310 | 10.576 | 5.986 | 69.416 | 68.063 | 71.542 | 71.778 | 70.556 | 1.505 | 1.502 | 1.325 | 1.586 | 1.691 |
38 | 3.507 | 2.153 | 4.295 | 4.532 | 3.963 | 39.684 | 39.027 | 40.410 | 40.009 | 39.769 | 1.470 | 1.475 | 1.295 | 1.645 | 1.667 |
39 | 6.105 | 4.066 | 10.277 | 9.581 | 6.462 | 71.704 | 70.143 | 73.620 | 74.197 | 73.075 | 1.498 | 1.502 | 1.347 | 1.675 | 1.689 |
40 | 4.922 | 3.235 | 8.136 | 8.628 | 5.312 | 69.053 | 68.017 | 70.443 | 70.690 | 69.939 | 1.626 | 1.629 | 1.422 | 1.702 | 1.729 |
41 | 4.504 | 2.741 | 5.877 | 7.137 | 4.894 | 40.144 | 38.972 | 41.447 | 41.803 | 40.756 | 1.167 | 1.178 | 1.023 | 1.274 | 1.362 |
42 | 2.455 | 1.685 | 4.341 | 4.294 | 2.814 | 46.511 | 45.960 | 47.201 | 46.959 | 46.771 | 1.818 | 1.814 | 1.548 | 1.859 | 1.900 |
43 | 5.888 | 4.024 | 10.207 | 13.441 | 6.479 | 57.403 | 55.648 | 60.020 | 60.746 | 58.590 | 1.346 | 1.359 | 1.170 | 1.361 | 1.541 |
44 | 7.117 | 4.549 | 11.958 | 13.347 | 7.295 | 68.859 | 67.121 | 71.403 | 71.491 | 70.155 | 1.210 | 1.217 | 1.085 | 1.267 | 1.375 |
45 | 5.799 | 3.798 | 8.163 | 6.613 | 5.528 | 61.637 | 60.158 | 62.743 | 62.588 | 62.438 | 1.397 | 1.419 | 1.237 | 1.607 | 1.610 |
46 | 6.743 | 4.456 | 9.708 | 7.015 | 6.439 | 62.944 | 61.046 | 64.226 | 64.678 | 63.716 | 1.469 | 1.491 | 1.301 | 1.833 | 1.778 |
47 | 3.093 | 1.968 | 4.022 | 3.840 | 3.314 | 46.635 | 46.151 | 47.020 | 47.040 | 47.051 | 1.795 | 1.831 | 1.625 | 1.933 | 1.972 |
48 | 3.827 | 2.442 | 5.417 | 9.030 | 4.429 | 52.819 | 52.083 | 53.747 | 53.999 | 53.055 | 1.358 | 1.349 | 1.220 | 1.325 | 1.485 |
49 | 5.648 | 3.692 | 11.680 | 18.414 | 6.711 | 58.624 | 56.957 | 61.948 | 64.662 | 60.159 | 1.234 | 1.220 | 1.083 | 1.176 | 1.335 |
50 | 5.906 | 3.845 | 8.503 | 9.928 | 6.107 | 65.096 | 63.548 | 66.613 | 66.973 | 66.147 | 1.416 | 1.410 | 1.253 | 1.504 | 1.581 |
51 | 6.454 | 4.227 | 11.331 | 14.627 | 7.173 | 59.019 | 57.101 | 61.990 | 63.246 | 60.322 | 1.040 | 1.036 | 0.910 | 1.011 | 1.184 |
52 | 5.613 | 3.671 | 9.798 | 6.785 | 5.648 | 62.006 | 60.582 | 64.070 | 63.021 | 63.163 | 1.521 | 1.527 | 1.311 | 1.777 | 1.784 |
53 | 4.422 | 2.867 | 6.502 | 6.423 | 4.930 | 38.005 | 36.352 | 40.019 | 39.999 | 39.053 | 1.179 | 1.166 | 1.019 | 1.337 | 1.348 |
54 | 4.984 | 3.171 | 7.207 | 10.234 | 5.561 | 75.578 | 74.697 | 76.843 | 77.739 | 76.383 | 1.459 | 1.453 | 1.336 | 1.498 | 1.594 |
Avg | 4.638 | 3.032 | 7.346 | 8.425 | 5.046 | 55.307 | 54.128 | 56.787 | 57.138 | 56.114 | 1.439 | 1.441 | 1.262 | 1.517 | 1.575 |
Methods | Bilinear | Bicubic | SPSR | ESRGAN | SR in CMTGAN |
---|---|---|---|---|---|
Inference time | 1.8 ms | 2.6 ms | 147.1 ms | 58.5 ms | 10.1 ms |
Methods | AP | APs | APm |
---|---|---|---|
Bilinear + YOLOv4 | 33.39 | 20.64 | 35.68 |
Bicubic + YOLOv4 | 32.20 | 22.14 | 34.30 |
SPSR + YOLOv4 | 19.75 | 13.75 | 20.84 |
ESRGAN + YOLOv4 | 34.70 | 20.42 | 36.33 |
Bilinear + FasterRCNN | 49.95 | 25.20 | 56.49 |
Bicubic + FasterRCNN | 48.81 | 24.00 | 54.86 |
SPSR + FasterRCNN | 26.99 | 15.91 | 28.70 |
ESRGAN + FasterRCNN | 46.59 | 33.58 | 48.89 |
CMTGAN | 55.22 | 36.99 | 69.72 |
Methods | Resize/SR | Detection | Total |
---|---|---|---|
Bilinear + YOLOv4 | 1.8 ms | 29.4 ms | 31.2 ms |
Bicubic + YOLOv4 | 2.6 ms | 29.4 ms | 32.0 ms |
SPSR + YOLOv4 | 147.1 ms | 29.4 ms | 176.5 ms |
ESRGAN + YOLOv4 | 58.5 ms | 29.4 ms | 87.9 ms |
Bilinear + FasterRCNN | 1.8 ms | 42.1 ms | 43.9 ms |
Bicubic + FasterRCNN | 2.6 ms | 42.1 ms | 44.7 ms |
SPSR + FasterRCNN | 147.1 ms | 42.1 ms | 189.2 ms |
ESRGAN + FasterRCNN | 58.5 ms | 42.1 ms | 100.6 ms |
CMTGAN | 10.1 ms | 35.8 ms | 45.9 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, J.; Bai, K.; Sun, Y. Centered Multi-Task Generative Adversarial Network for Small Object Detection. Sensors 2021, 21, 5194. https://doi.org/10.3390/s21155194
Wang H, Wang J, Bai K, Sun Y. Centered Multi-Task Generative Adversarial Network for Small Object Detection. Sensors. 2021; 21(15):5194. https://doi.org/10.3390/s21155194
Chicago/Turabian StyleWang, Hongfeng, Jianzhong Wang, Kemeng Bai, and Yong Sun. 2021. "Centered Multi-Task Generative Adversarial Network for Small Object Detection" Sensors 21, no. 15: 5194. https://doi.org/10.3390/s21155194
APA StyleWang, H., Wang, J., Bai, K., & Sun, Y. (2021). Centered Multi-Task Generative Adversarial Network for Small Object Detection. Sensors, 21(15), 5194. https://doi.org/10.3390/s21155194