Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications
Abstract
:1. Introduction and Motivation
- Energy harvesting using power tracking algorithms;
- Low-voltage circuit topologies;
- Voltage converters with low start-up voltage;
- Low-voltage driving circuits.
- Minimum start-up voltage of CP;
- Output-to-input voltage ratio;
- Output voltage ripple;
- Self-sustainability;
- Power throughput;
- Overall EH-PMU effectivity in the target power range.
2. DC-DC Converter System
2.1. Charge Pump Core
- (a)
- (b)
- The ideal term , which is valid for linear CP, is topology-dependent and can be managed exclusively by topology interventions. is a number of stages in the cascade, k is a number of power flow patches known as branches, is clock frequency and represents the main flying capacitor (in Figure 2 denoted as , where x stands for p or n) [18].
2.2. Boosted Driver
2.3. Voltage Divider Branch
2.4. Comparator with Hysteresis
3. Application
WPT System Description
4. Measurement and Achieved Results
4.1. Self-Powered CP System
4.2. Self-Powered Cp System with the Rf Harvester
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Hamid, F.A.; Tiong, S.K.; Amin, N. Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics 2020, 9, 1345. [Google Scholar] [CrossRef]
- Sil, I.; Mukherjee, S.; Biswas, K. Design Optimization of CMOS Thermoelectric Energy Harvester for High Thermoelectric Efficiency. In Proceedings of the 2nd International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech), Kolkata, India, 4–5 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Peng, Y.; Choo, K.D.; Oh, S.; Lee, I.; Jang, T.; Kim, Y.; Lim, J.; Blaauw, D.; Sylvester, D. An efficient piezoelectric energy harvesting interface circuit using a sense-and-set rectifier. IEEE J. Solid-State Circuits 2019, 54, 3348–3361. [Google Scholar] [CrossRef]
- Siang, J.; Lim, M.; Salman Leong, M. Review of vibration-based energy harvesting technology: Mechanism and architectural approach. Int. J. Energy Res. 2018, 42, 1866–1893. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, Z.; Luo, J.; Chou, X. Recent Developments of Acoustic Energy Harvesting: A Review. Micromachines 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Lanbin, Z.; Dai, H.; Yang, Y.; Wang, L. Design of high-efficiency electromagnetic energy harvester based on a rolling magnet. Energy Convers. Manag. 2019, 185, 202–210. [Google Scholar]
- Sun, L.; Ma, D.; Tang, H. A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging. Renew. Sustain. Energy Rev. 2018, 91, 490–503. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Chandrakasan, A.P. Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor. IEEE J. Solid-State Circuits 2012, 47, 2199–2215. [Google Scholar] [CrossRef]
- Pakkirisami Churchill, K.K.; Chong, G.; Ramiah, H.; Ahmad, M.Y.; Rajendran, J. Low-Voltage Capacitive-Based Step-Up DC-DC Converters for RF Energy Harvesting System: A Review. IEEE Access 2020, 8, 186393–186407. [Google Scholar] [CrossRef]
- Taghadosi, M.; Albasha, L.; Quadir, N.A.; Rahama, Y.A.; Qaddoumi, N. High Efficiency Energy Harvesters in 65 nm CMOS Process for Autonomous IoT Sensor Applications. IEEE Access 2018, 6, 2397–2409. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, N.; Min, H.; Shi, C.J.R. A High-Efficiency Split–Merge Charge Pump for Solar Energy Harvesting. IEEE Trans. Circuits Syst. Express Briefs 2017, 64, 545–549. [Google Scholar] [CrossRef]
- Colella, R.; Tarricone, L.; Catarinucci, L. SPARTACUS: Self-Powered Augmented RFID Tag for Autonomous Computing and Ubiquitous Sensing. IEEE Trans. Antennas Propag. 2015, 63, 2272–2281. [Google Scholar] [CrossRef]
- Al-Shebanee, D.; Wunderlich, R.; Heinen, S. Design of highly sensitive CMOS RF energy harvester using ultra-low power charge pump. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Vega, J.; Lezama, J. Design and Implementation of a Thermoelectric Energy Harvester with MPPT Algorithms and Supercapacitor. IEEE Lat. Am. Trans. 2021, 19, 163–170. [Google Scholar] [CrossRef]
- Bhapkar, D.; Maity, A. Power Extraction From an Ultra-Low Input Voltage Source in a Battery-less Thermoelectric Harvester. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, India, 5–7 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kováč, M.; Arbet, D.; Stopjaková, V.; Šovčĺk, M.; Nagy, L. Investigation of Low-Voltage, Sub-threshold Charge Pump with Parasitics Aware Design Methodology. In Proceedings of the 2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Cluj-Napoca, Romania, 24–26 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Coustans, M.; Krummenacher, F.; Kayal, M. A Fully Integrated 60 mV Cold-Start Circuit for Single Coil DC–DC Boost Converter for Thermoelectric Energy Harvesting. IEEE Trans. Circuits Syst. Express Briefs 2019, 66, 1668–1672. [Google Scholar] [CrossRef]
- Ki, W.H.; Lu, Y.; Su, F.; Tsui, C.Y. Analysis and Design Strategy of On-Chip Charge Pumps for Micro-power Energy Harvesting Applications; VLSI-SoC: Advanced Research for Systems on Chip; Mir, S., Tsui, C.Y., Reis, R., Choy, O.C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 158–186. [Google Scholar]
- Ballo, A.; Grasso, A.D.; Palumbo, G. A Review of Charge Pump Topologies for the Power Management of IoT Nodes. Electronics 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.; Grasso, A.D.; Palumbo, G. A High-Performance Charge Pump Topology for Very-Low-Voltage Applications. IEEE Trans. Circuits Syst. Express Briefs 2020, 67, 1304–1308. [Google Scholar] [CrossRef]
- Stopjaková, V.; Rakus, M.; Kovác, M.; Arbet, D.; Nagy, L.; Sovcik, M.; Potocný, M. Ultra-Low Voltage Analog IC Design: Challenges, Methods and Examples. Radioengineering 2018, 27, 171–185. [Google Scholar] [CrossRef]
- Ker, M.D.; Chen, S.L.; Tsai, C.S. Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes. IEEE J. Solid-State Circuits 2006, 41, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.; Grasso, A.D.; Palumbo, G. A Subthreshold Cross-Coupled Hybrid Charge Pump for 50-mV Cold-Start. IEEE Access 2020, 8, 188959–188969. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Giustolisi, G.; Palumbo, G. Optimized Charge Pump With Clock Booster for Reduced Rise Time or Silicon Area. IEEE Trans. Circuits Syst. Express Briefs 2019, 66, 1977–1981. [Google Scholar] [CrossRef]
- Šovčík, M.; Kováč, M.; Arbet, D.; Stopjaková, V.; Potočný, M. Ultra-low-voltage boosted driver for self-powered systems. Microelectron. Reliab. 2018, 80, 155–163. [Google Scholar] [CrossRef]
- Šovčík, M.; Kováč, M.; Arbet, D.; Stopjaková, V. Ultra-low-voltage driver for large load capacitance in 130nm CMOS technology. In Proceedings of the 2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Dresden, Germany, 19–21 April 2017; pp. 127–132. [Google Scholar] [CrossRef]
- Moon, U.; Temes, G.; Bidari, E.; Keskin, M.; Wu, L.; Steensgaard, J.; Maloberti, F. Switched-capacitor circuit techniques in submicron low-voltage CMOS. In Proceedings of the ICVC ’99. 6th International Conference on VLSI and CAD (Cat. No.99EX361), Seoul, Korea, 26–27 October 1999; pp. 349–358. [Google Scholar] [CrossRef]
- Nagy, L.; Arbet, D.; Kovac, M.; Potocny, M.; Stopjakova, V. Ultra Low-Voltage Rail-to-Rail Comparator Design in 130 nm CMOS Technology. In Proceedings of the 2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Cluj-Napoca, Romania, 24–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Nagy, L.; Arbet, D.; Kovac, M.; Potocny, M.; Sovcik, M.; Stopjakova, V. Performance Analysis Of Ultra Low-Voltage Rail-to-Rail Comparator In 130 nm CMOS Technology. In Proceedings of the 2019 IEEE AFRICON, Accra, Ghana, 25–27 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Stopjaková, V.; Kováč, M.; Potočný, M. On-chip Energy Harvesting for Implantable Medical Devices. Radioengineering 2020, 29, 269–284. [Google Scholar] [CrossRef]
- Kováč, M.; Stopjaková, V.; Arbet, D.; Nagy, L.; Brenkuš, J. Investigation of on-chip coil in 130 nm standard CMOS for WPT and bio-applications. In Proceedings of the 2016 International Conference on Emerging eLearning Technologies and Applications (ICETA), Vysoké Tatry, Slovakia, 24–25 November 2016; pp. 177–182. [Google Scholar] [CrossRef]
- Potočný, M.; Kováč, M.; Arbet, D.; Stopjaková, V. A 200 MHz RF wireless power transfer receiver for implantable medical devices fully integrated in 130 nm CMOS. In Proceedings of the 2018 16th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 8–10 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kotani, K.; Ito, T. High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs. In Proceedings of the 2007 IEEE Asian Solid-State Circuits Conference, Jeju, Korea, 12–14 November 2007; pp. 119–122. [Google Scholar] [CrossRef]
- Dai, H.; Lu, Y.; Law, M.K.; Sin, S.W.; Seng-Pan, U.; Martins, R.P. A review and design of the on-chip rectifiers for RF energy harvesting. In Proceedings of the 2015 IEEE International Wireless Symposium (IWS 2015), Shenzhen, China, 30 March–1 April 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Yeo, K.H.; Ali, S.H.M.; Menon, P.S.; Islam, M.S.; Yeo, K.H. Comparison of CMOS rectifiers for micropower energy harvesters. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015; pp. 419–423. [Google Scholar] [CrossRef]
- Zargham, M.; Gulak, P.G. Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer Systems. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 228–245. [Google Scholar] [CrossRef] [PubMed]
- Finkenzeller, K.; Müller, D. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Potočný, M.; Stopjaková, V.; Kováč, M. Measurement of a Wireless Power Transfer System with a Fully Integrated Receiver. In Proceedings of the 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), Starý Smokovec, Slovakia, 21–22 November 2019; pp. 655–660. [Google Scholar] [CrossRef]
- Devaraj, A.; Megahed, M.; Liu, Y.; Ramachandran, A.; Anand, T. A Switched Capacitor Multiple Input Single Output Energy Harvester (Solar + Piezo) Achieving 74.6% Efficiency With Simultaneous MPPT. IEEE Trans. Circuits Syst. Regul. Pap. 2019, 66, 4876–4887. [Google Scholar] [CrossRef]
- Liu, X.; Ravichandran, K.; Sánchez-Sinencio, E. A Switched Capacitor Energy Harvester Based on a Single-Cycle Criterion for MPPT to Eliminate Storage Capacitor. IEEE Trans. Circuits Syst. Regul. Pap. 2018, 65, 793–803. [Google Scholar] [CrossRef]
- Yoon, S.; Carreon-Bautista, S.; Sánchez-Sinencio, E. An Area Efficient Thermal Energy Harvester With Reconfigurable Capacitor Charge Pump for IoT Applications. IEEE Trans. Circuits Syst. Express Briefs 2018, 65, 1974–1978. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, L.; Ravichandran, K.; Sánchez-Sinencio, E. A Highly Efficient Reconfigurable Charge Pump Energy Harvester With Wide Harvesting Range and Two-Dimensional MPPT for Internet of Things. IEEE J. Solid-State Circuits 2016, 51, 1302–1312. [Google Scholar] [CrossRef]
- Uluşan, H.; Zorlu, O.; Külah, H.; Muhtaroğlu, A. Stage optimization in regulated step-up for low voltage electromagnetic energy harvesters. In Proceedings of the 5th International Conference on Energy Aware Computing Systems Applications, Cairo, Egypt, 24–26 March 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Talkhooncheh, A.H.; Yu, Y.; Agarwal, A.; Kuo, W.; Chen, K.C.X.; Wang, M.; Hoskuldsdottir, G.; Gao, W.; Emami, A. A Fully-Integrated Biofuel-Cell-Based Energy Harvester with 86% Peak Efficiency and 0.25V Minimum Input Voltage Using Source-Adaptive MPPT. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Yi, H.; Yin, J.; Mak, P.I.; Martins, R.P. A 0.032-mm2 0.15-V Three-Stage Charge-Pump Scheme Using a Differential Bootstrapped Ring-VCO for Energy-Harvesting Applications. IEEE Trans. Circuits Syst. Express Briefs 2018, 65, 146–150. [Google Scholar] [CrossRef]
- Whittaker, K.; Rizkalla, M.; Ytterdal, T. A Low Power FinFET Charge Pump for Energy Harvesting Applications. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 1048–1051. [Google Scholar] [CrossRef]
- Chen, P.H.; Ishida, K.; Zhang, X.; Okuma, Y.; Ryu, Y.; Takamiya, M.; Sakurai, T. A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester. In Proceedings of the 17th Asia and South Pacific Design Automation Conference, Sydney, Australia, 30 Janurary–2 February 2012; pp. 469–470. [Google Scholar] [CrossRef]
This Work | [46] | [47] | [40] | [41] | [42] | [43] | [48] | [44] | [45] | [24] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2021 | 2018 | 2020 | 2019 | 2017 | 2017 | 2016 | 2012 | 2015 | 2020 | 2020 | |
Process node | (nm) | 130 | 65 | 7 | 65 | 180 | 130 | 180 | 65 | 180 | 65 | 28 |
Area | () | 543 | 32 | - | 470 | 552 | 835 | 1000 | 783 | 48 | 1400 | 11.6 |
VIN | (V) | 0.18–0.3 | 0.1–0.3 | 0.15 | >0.55 | 0.5–1.8 | 0.25–1 | 0.45–3 | 0.12–0.16 | 0.5–1 | 0.25–1 | 0.04–0.1 |
VOUT | (V) | 0.4–0.6 | 1.2 (1) | 0.63 | 1.8–2.5 | 1.8 | 1 | 3.3 | 0.77–1.32 | 1.8 | 0.9–1.5 | - |
VOUT ripple | (mV) | 27.9 | 0.1–4 | 20 | 18 | 76 | 80 | - | - | - | - | - |
Peak IOUT | (μA) | 38 (1) | 5 (1) | 1 | 35 | 19.5 | 500 | 15 | <12 | <7 | - | - |
POUT | (μW) | 15.2 (1) | 6 (1) | 0.68 | 35–70 | <35.1 | <500 | <50 | <10 | 10.8 (2) | 1–100 | 2 (4) |
Peak | (%) | 43 (3) | 45 (3) | 31.76 (3) | 70.8 | 60–72 | 43 (3) | 81 | 40 (3) | 52 (3) | >80 (5) | 38.9 (3) |
FSW | (MHz) | 0.05 (extern) | 15.2 | 4 | 1 | 0.1 | <4.25 | - | <20 | - | 0.1–2 | 1 |
Topology | BD cross-coupled | Cross-coupled | - | Series-parallel | - | Dickson | - | - | - | Boost+Buck SCPC | Hybrid | |
Number of stages | Multi-branch (3 per branch) | 3 | 32 | 2 | 2 | 6 | - | 10 | 3 | - | 2 | |
MPPT/Regulation | N/Y | N/N | N/Y | Y/Y | 2D/Y | 3D/Y | 2D/Y | N/N | N/Y | 2D/Y | N/N | |
(6) | 0.0952 (7) | 0.8512 | 0.2372 | - | - | 0.0172 | 0.1248 (8) | - | - | - | 0.0648 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potocny, M.; Kovac, M.; Arbet, D.; Sovcik, M.; Nagy, L.; Stopjakova, V.; Ravasz, R. Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications. Sensors 2021, 21, 5721. https://doi.org/10.3390/s21175721
Potocny M, Kovac M, Arbet D, Sovcik M, Nagy L, Stopjakova V, Ravasz R. Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications. Sensors. 2021; 21(17):5721. https://doi.org/10.3390/s21175721
Chicago/Turabian StylePotocny, Miroslav, Martin Kovac, Daniel Arbet, Michal Sovcik, Lukas Nagy, Viera Stopjakova, and Richard Ravasz. 2021. "Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications" Sensors 21, no. 17: 5721. https://doi.org/10.3390/s21175721
APA StylePotocny, M., Kovac, M., Arbet, D., Sovcik, M., Nagy, L., Stopjakova, V., & Ravasz, R. (2021). Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications. Sensors, 21(17), 5721. https://doi.org/10.3390/s21175721