A Simple Low-Cost Electrocardiogram Synchronizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Set-Up
2.2. Algorithm for ECG to TTL Conversion
- 1.
- Estimate the first derivative of the ECG () using finite differences between two samples apart ():
- 2.
- Compare to the predefined threshold, .
- a.
- If and the last R-wave detection was more than 20 ms ago, the -th R-wave was detected. Thus, update the and the values:
- b.
- Otherwise, decrease and return to step 1:
- 3.
- Wait until and set a high TTL state, where is the current time and is the parameter set to compensate for instrument delay and to set the ECG trigger phase.
- 4.
- Set a low TTL state if it has been high for 25 ms or more. Then, return to step 1.
2.3. System Adjustment and Tests
2.4. Availability and Cost
3. Results
Algorithm and System Operation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Roy, J.; Zarqane, H.; Azais, B.; Vernhet Kovacsik, H.; Mura, T.; Okerlund, D.; Lacampagne, A.; Amedro, P. Impact of Motion Correction Algorithms on Image Quality in Children Undergoing Coronary Computed Tomography Angiography A Comparison with Regular Monophasic and Multiphasic Acquisitions. Circ. Cardiovasc. Imaging 2019, 12, e009650. [Google Scholar] [CrossRef] [PubMed]
- Ladrova, M.; Martinek, R.; Nedoma, J.; Hanzlikova, P.; Nelson, M.D.; Kahankova, R.; Brablik, J.; Kolarik, J. Monitoring and Synchronization of Cardiac and Respiratory Traces in Magnetic Resonance Imaging: A Review. IEEE Rev. Biomed. Eng. 2021. [Google Scholar] [CrossRef] [PubMed]
- Martinek, R.; Brablik, J.; Kolarik, J.; Ladrova, M.; Nedoma, J.A.N.; Jaros, R.; Soustek, L.; Kahankova, R.; Fajkus, M.; Vojtisek, L.; et al. A Low-Cost System for Seismocardiography-Based Cardiac Triggering: A Practical Solution for Cardiovascular Magnetic Resonance Imaging at 3 Tesla. IEEE Access 2019, 7, 118608–118629. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Bax, J.; Knuuti, J.; Lancellotti, P.; Pinto, F.; Popescu, B.A.; Sechtem, U. The ESC Textbook of Cardiovascular Imaging. Chapter 3: Cardiac CT—Basic principles. In The ESC Textbook of Cardiovascular Imaging, 3rd ed.; Zamorano, J.L., Bax, J., Knuuti, J., Sechtem, U., Lancellotti, P., Pinto, F., Popescu, B.A., Eds.; Oxford University Press: Oxford, UK, 2021; pp. 57–65. ISBN 9780198849353. [Google Scholar]
- Osanai, T.; Kazumata, K.; Kobayashi, S.; Fujima, N.; Kurisu, K.; Shimoda, Y.; Houkin, K. Electrocardiogram-Triggered Angiography Non-Contrast-Enhanced (TRANCE) Imaging to Assess Access Route Before Diagnostic Cerebral Angiography. World Neurosurg. 2018, 119, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, J.; Azais, B.; Zarqane, H.; Vernhet Kovacsik, H.; Mura, T.; Lacampagne, A.; Amedro, P. Selection of optimal cardiac phases for ECG-triggered coronary CT angiography in pediatrics. Phys. Med. 2021, 81, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Sabarudin, A.; Sun, Z.; Khairuddin, A. Coronary CT angiography with single-source and dual-source CT: Comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols. Int. J. Cardiol. 2013, 168, 746–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, D.; Zhang, F.; Wang, C. A Real-time QRS Complex Detection Algorithm Based on Differential Threshold Method. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 129–133. [Google Scholar]
- Hou, Z.; Dong, Y.; Xiang, J.; Li, X.; Yang, B. A Real-Time QRS Detection Method Based on Phase Portraits and Box-Scoring Calculation. IEEE Sens. J. 2018, 18, 3694–3702. [Google Scholar] [CrossRef]
- Lafruitl, G.; Cornelis, J.; Group, R.; Brussel, V.U. An ECG Trigger Module for the Acquisition of Cardiac MR Images. In Proceedings of the Computers in Cardiology 1994, Bethesda, MD, USA, 25–28 September 1994; pp. 533–536. [Google Scholar]
- Ruppert, M.G.; Harcombe, D.M.; Ragazzon, M.R.P.; Moheimani, S.O.R.; Fleming, A.J. A review of demodulation techniques for amplitude-modulation atomic force microscopy. Beilstein J. Nanotechnol. 2017, 8, 1407–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council 2011. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-38629-6. [Google Scholar] [CrossRef]
- Becker, D.E. Fundamentals of Electrocardiography Interpretation. Anesth. Prog. 2006, 53, 53–64. [Google Scholar] [CrossRef] [Green Version]
Stage | Source | Trace | # Cycles | # FP/# R-Waves (%) | # FN/# R-Waves (%) | Error (%) |
---|---|---|---|---|---|---|
Adjustment | Demo | D001 | 20 | 0.00 | 0.00 | 0.00 |
D002 | 50 | 0.00 | 0.00 | 0.00 | ||
Human | P101 | 64 | 0.00 | 9.38 | 9.38 | |
P102 | 60 | 0.00 | 6.67 | 6.67 | ||
P103 | 61 | 0.00 | 8.20 | 8.20 | ||
P104 | 59 | 1.69 | 10.17 | 11.86 | ||
P105 | 67 | 1.49 | 17.91 | 19.40 | ||
P106 | 65 | 0.00 | 1.54 | 1.54 | ||
P107 | 64 | 4.69 | 0.00 | 4.69 | ||
P108 | 63 | 0.00 | 0.00 | 0.00 | ||
P109 | 66 | 0.00 | 0.00 | 0.00 | ||
P110 | 13 | 0.00 | 0.00 | 0.00 | ||
P111 | 64 | 0.00 | 0.00 | 0.00 | ||
P112 | 67 | 0.00 | 0.00 | 0.00 | ||
Testing | Swine | S101 | 136 | 0.74 | 0.00 | 0.74 |
S201 | 138 | 0.72 | 0.00 | 0.72 | ||
S202 | 137 | 0.73 | 0.00 | 0.73 | ||
S203 | 134 | 0.00 | 0.00 | 0.00 | ||
S204 | 136 | 0.00 | 0.00 | 0.00 | ||
S301 | 221 | 0.00 | 1.81 | 1.81 | ||
S302 | 159 | 0.00 | 0.63 | 0.63 |
Stage | Source | Trace | ||
---|---|---|---|---|
Adjustment | Demo | D001 | 49.30 | 5.64 |
D002 | 44.78 | 3.60 | ||
Human | P101 | 30.92 | 108.08 | |
P102 | 18.61 | 15.26 | ||
P103 | 35.34 | 66.13 | ||
P104 | 36.01 | 156.14 | ||
P105 | 22.43 | 278.18 | ||
P106 | 53.00 | 42.34 | ||
P107 | 48.26 | 29.47 | ||
P108 | 49.53 | 29.27 | ||
P109 | 57.62 | 31.38 | ||
P110 | 51.70 | 27.87 | ||
P111 | 43.85 | 34.65 | ||
P112 | 60.28 | 51.43 | ||
Testing | Swine | S101 | 41.07 | 16.60 |
S201 | 37.12 | 18.68 | ||
S202 | 34.54 | 13.59 | ||
S203 | 30.45 | 3.74 | ||
S204 | 36.62 | 3.41 | ||
S301 | 27.01 | 13.47 | ||
S302 | 26.06 | 6.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorós, S.; Gálvez-Montón, C.; Rodríguez-Leor, O.; O’Callaghan, J.M. A Simple Low-Cost Electrocardiogram Synchronizer. Sensors 2021, 21, 5885. https://doi.org/10.3390/s21175885
Amorós S, Gálvez-Montón C, Rodríguez-Leor O, O’Callaghan JM. A Simple Low-Cost Electrocardiogram Synchronizer. Sensors. 2021; 21(17):5885. https://doi.org/10.3390/s21175885
Chicago/Turabian StyleAmorós, Susana, Carolina Gálvez-Montón, Oriol Rodríguez-Leor, and Juan Manuel O’Callaghan. 2021. "A Simple Low-Cost Electrocardiogram Synchronizer" Sensors 21, no. 17: 5885. https://doi.org/10.3390/s21175885
APA StyleAmorós, S., Gálvez-Montón, C., Rodríguez-Leor, O., & O’Callaghan, J. M. (2021). A Simple Low-Cost Electrocardiogram Synchronizer. Sensors, 21(17), 5885. https://doi.org/10.3390/s21175885