Using Antenna Arrays with Only One Active Element for Beam Reconfiguration and Sensitive Study in Dielectric Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Antenna
2.2. Measuring Polution: Effective Medium Model
2.3. Numerical Simulation Algorithm
2.3.1. Antenna Model and Optimization
2.3.2. Optimization Strategy
3. Results
3.1. Reconfiguration of the Antenna Beam
3.2. Maximization of the Antenna Response to Changes in
3.2.1. Field in the Main Lobe Maximum
3.2.2. Reflection Coefficient
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanta, H.C.; Kouzani, A.Z.; Mandal, S.K. Reconfigurable antennas and their applications. Univ. J. Electr. Electron. Eng. 2019, 6, 239–258. [Google Scholar] [CrossRef]
- Bucci, O.M.; Mazzarella, G.; Panariello, G. Reconfigurable arrays by phase-only control. IEEE Trans. Antennas Propag. 1991, 39, 919–925. [Google Scholar] [CrossRef]
- Dürr, M.; Trastoy, A.; Ares-Pena, F. Multiple pattern linear antenna arrays with single prefixed amplitude distributions: Modified Woodward-Lawson synthesis. Electron. Lett. 2000, 36, 1345–1346. [Google Scholar] [CrossRef]
- Díaz, X.; Rodríguez-González, J.A.; Ares-Pena, F.; Moreno, E. Design of phase-differentiated multiple-pattern antenna arrays. Microw. Opt. Technol. Lett. 2000, 16, 52–53. [Google Scholar] [CrossRef]
- Brégains, J.C.; Trastoy, A.; Ares-Pena, F.; Moreno, E. Synthesis of multiple-pattern planar antenna arrays with single prefixed or jointly optimised amplitude distributions. Microw. Opt. Technol. Lett. 2002, 32, 74–78. [Google Scholar] [CrossRef]
- Trastoy, A.; Rahmat-Samii, Y.; Ares-Pena, F.; Moreno, E. Two pattern linear array antenna: Synthesis and analysis of tolerance. IEE Proc. Microw. Antennas Propag. 2004, 151, 127–130. [Google Scholar] [CrossRef]
- Ares-Pena, F.J.; Franceschetti, G.; Rodríguez-González, J.A. A simple alternative for beam reconfiguration of array antennas. Prog. Electromagn. Res. 2008, 88, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, J.A.; Trastoy, A.; Brégains, J.C.; Ares-Pena, F.J.; Franceschetti, G. Beam reconfiguration of linear arrays using parasitic elements. Electron. Lett. 2006, 42, 3. [Google Scholar]
- Yagi, H. Beam transmission of ultra-short waves. Proc. IRE 1928, 16, 715. [Google Scholar] [CrossRef]
- Jones, E.A.; Joines, W.T. Design of Yagi-Uda antennas using genetic algorithms. IEEE Trans. Antennas Propag. 1997, 45, 1386–1392. [Google Scholar] [CrossRef]
- Yuan, H.W.; Gong, S.X.; Zhang, P.F.; Wang, X. Wide scanning phased array antenna using printed dipole antennas with parasitic element. Prog. Electromagn. Res. 2008, 2, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Elliott, R.S. An Introduction to Guided Waves and Microwave Circuits; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Smith, E.K.; Weintraub, S. The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Salas-Sánchez, A.A.; López-Martín, M.E.; Rodríguez-González, J.A.; Ares-Pena, F.J. Design of polyimide-coated Yagi-Uda antennas for monitoring the relative humidity level. IEEE Geosci. Remote Sens. 2017, 14, 961–963. [Google Scholar] [CrossRef]
- Sihvola, A.H. How strict are theoretical bounds for dielectric properties of mixtures? IEEE Trans. Geosci. Remote Sens. 2002, 40, 880–886. [Google Scholar] [CrossRef]
- Amaral, S.S.; de Carvalho, J.A., Jr.; Costa, M.A.M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.I.; Tanré, D.; Boucher, O. A Satellite View of Aerosols in the Climate System. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Grusha, G.V. Antennas for the remote measurement systems of the gaseous pollution concentration. In Proceedings of the 4th International Conference on Antenna Theory and Techniques, Sevastopol, Ukraine, 9–12 September 2003; pp. 574–576. [Google Scholar]
- Salas-Sánchez, A.A.; López-Martín, M.E.; Rodríguez-González, J.A.; Ares-Pena, F.J. Technique for determination of particulate matter pollution in the atmosphere using waveguide slot linear array antennas: A feasibility study. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1502–1506. [Google Scholar] [CrossRef]
- Salas-Sánchez, A.A.; Rauch, J.; López-Martín, M.E.; Rodríguez-González, J.A.; Franceschetti, G.; Ares-Pena, F.J. Feasibility Study on Measuring the Particulate Matter Level in the Atmosphere by Means of Yagi–Uda-Like Antennas. Sensors 2020, 20, 3225. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.; Paillou, P.; Dobrijevic, M.; Ruffié, G.; Coll, P.; Bernard, J.M.; Encrenaz, P. Impact of aerosols present in Titan’s atmosphere on the CASSINI radar experiment. Icarus 2003, 164, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Thompson, W.D.; Squyres, S.W. Titan and other icy satellites: Dielectric properties of constituent materials and implications for radar sounding. Icarus 1990, 86, 336–354. [Google Scholar] [CrossRef]
- Paillou, P.; Lunine, J.; Ruffié, G.; Encrenaz, P.; Wall, S.; Lorenz, R.; Janssen, M. Microwave dielectric constant of Titan-relevant materials. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Weeks, W.L. Antenna Engineering; McGraw-Hill: New York, NY, USA, 1968; pp. 184–198. [Google Scholar]
- Elliott, R.S. Antenna Theory and Design; IEEE Press: Piscataway, NJ, USA, 2003. [Google Scholar]
- Goudos, S.K.; Kalialakis, C.; Mittra, R. Evolutionary Algorithms Applied to Antennas and Propagation: A Review of State of the Art. Int. J. Antennas Propag. 2016, 1010459. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
Element No. | ||
---|---|---|
a | ||
(a) | (b) | (c) | ||||
---|---|---|---|---|---|---|
Element No. | ||||||
Element No. | ||
---|---|---|
1 | 0.2669 | 0.1925 |
2 | 0.2216 | 0.2277 |
3 | 0.2282 | 0.2412 |
4 | 0.2430 | - |
1.1721 | ||
6.0031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayón-Buján, B.; Salas-Sánchez, A.Á.; Rodríguez-González, J.A.; López-Martín, M.E.; Ares-Pena, F.J. Using Antenna Arrays with Only One Active Element for Beam Reconfiguration and Sensitive Study in Dielectric Media. Sensors 2021, 21, 6019. https://doi.org/10.3390/s21186019
Bayón-Buján B, Salas-Sánchez AÁ, Rodríguez-González JA, López-Martín ME, Ares-Pena FJ. Using Antenna Arrays with Only One Active Element for Beam Reconfiguration and Sensitive Study in Dielectric Media. Sensors. 2021; 21(18):6019. https://doi.org/10.3390/s21186019
Chicago/Turabian StyleBayón-Buján, Borja, Aarón Ángel Salas-Sánchez, Juan Antonio Rodríguez-González, María Elena López-Martín, and Francisco José Ares-Pena. 2021. "Using Antenna Arrays with Only One Active Element for Beam Reconfiguration and Sensitive Study in Dielectric Media" Sensors 21, no. 18: 6019. https://doi.org/10.3390/s21186019
APA StyleBayón-Buján, B., Salas-Sánchez, A. Á., Rodríguez-González, J. A., López-Martín, M. E., & Ares-Pena, F. J. (2021). Using Antenna Arrays with Only One Active Element for Beam Reconfiguration and Sensitive Study in Dielectric Media. Sensors, 21(18), 6019. https://doi.org/10.3390/s21186019