A Method of Implementing a 4 × 4 Correlation Matrix for Evaluating the Uplink Channel Properties of MIMO Over-the-Air Apparatus
Abstract
:1. Introduction
- (1)
- Reverberation chamber based methods,
- (2)
- Two-stage methods,
- (3)
- Multiple probe antenna based methods.
2. Uplink Channel Model
3. Method to Control the BS Correlation
4. Method for Implementing a 4 × 4 Correlation Matrix
4.1. Corellation Characteristcs of the BS
4.2. Arrangement of Virtual Point Sources in the Implementation Model
4.3. Design of Implementation Model for the Conventional BS Antenna Arrangement
5. Experimental Verification
5.1. Bidirectional Fading Emulator
5.2. Measurement of the BS Correlation
5.3. Measurement of the 4 × 4 MIMO Uplink Channel Capacity
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIMO | Multiple-input multiple-output |
OTA | Over-the-air |
BS | Base station |
5G | Fifth-generation |
3GPP | 3rd Generation Partnership Project |
CTIA | Cellular Telecommunication and Internet Association |
XPR | Cross-polarization power ratio |
i.i.d. | Independent and identically distributed |
DUT | Device under test |
NLOS | Non-line-of-sight |
SNR | Signal-to-noise ratio |
RF | Radio-frequency |
IoT | Internet of Things |
V2X | Vehicle-to-everything |
Notations | |
Number of secondary wave sources | |
Phase-shift of the carrier wave from the i-th scatterer according to the m-th BS antenna | |
Azimuth angle of the i-th scatterer | |
Direction of movement of the DUT antenna | |
Maximum Doppler frequency | |
Speed of the DUT antenna | |
Wavelength of the carrier wave | |
Initial phase of the i-th scatterer with respect to the m-th BS antenna | |
Spatial correlation between the antennas | |
Distance between the isotropic antennas | |
Initial phase matrix corresponding to BS #m | |
Geometrical phase difference between the virtual point source of BS #m and probe #i | |
Difference between the calculated spatial correlation and the desired BS correlation | |
Angular spread of the incident wave | |
Relationships between conventional BS antenna arrangements and the incoming wave angle | |
Channel response between the BS antenna #p and the MIMO terminal antenna #r | |
(*) | Complex conjugate |
References
- Mashino, J.; Tateishi, K.; Muraoka, K.; Kurita, D.; Suyama, S.; Kishiyama, Y. Maritime 5G Experiment in Windsurfing World Cup by Using 28 GHz Band Massive MIMO. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1134–1135. [Google Scholar]
- Storck, C.R.; Duarte-Figueiredo, F. A 5G V2X Ecosystem Providing Internet of Vehicles. Sensors 2019, 19, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 3G Partnership Project. Study on Scenarios and Requirements for Next Generation Access Technologies; TR 83.913 v16.0.0; 3GPP: Sophia Antipolis, France, 2020. [Google Scholar]
- Foschini, G.J.; Gans, M.J. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wirel. Pers. Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
- Telatar, E. Capacity of Multi-antenna Gaussian Channels. Eur. Trans. Telecommun. 1999, 10, 585–595. [Google Scholar] [CrossRef]
- Nielsen, J.Ø.; Yanakiev, B.; Bonev, I.B.; Christensen, M.; Pedersen, G.F. User Influence on MIMO Channel Capacity for Handsets in Data Mode Operation. IEEE Trans. Antennas Propag. 2012, 60, 633–643. [Google Scholar] [CrossRef] [Green Version]
- 3G Partnership Project. Measurement of Radiated Performance for Multiple Input Multiple Output (MIMO) and Multi-Antenna Reception for High Speed Packet Access (HSPA) and LTE Terminals; TR 37.976 v16.0.0; 3GPP: Sophia Antipolis, France, 2020. [Google Scholar]
- CTIA. Test Plan for Wireless Device over the Air Performance; 3.8.2; CTIA Certification Program: Washington, DC, USA, 2019. [Google Scholar]
- Hussain, A.; Glazunov, A.A.; Einarsson, B.Þ.; Kildal, P.-S. Antenna Measurements in Reverberation Chamber Using USRP. IEEE Trans. Antennas Propag. 2016, 64, 1152–1157. [Google Scholar] [CrossRef]
- Park, S.-J.; Jeong, M.-H.; Bae, K.-B.; Kim, D.-C.; Minz, L.; Park, S.-O. Performance Comparison of 2 × 2 MIMO Antenna Arrays With Different Configurations and Polarizations in Reverberation Chamber at Millimeter-Waveband. IEEE Trans. Antennas Propag. 2017, 65, 6669–6678. [Google Scholar] [CrossRef]
- Rumney, M.; Kong, H.; Jing, Y. Practical active antenna evaluation using the two-stage MIMO OTA measurement method. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 3500–3503. [Google Scholar]
- Zhu, Q.; Huang, W.; Mao, K.; Zhong, W.; Hua, B.; Chen, X.; Zhao, Z. A Flexible FPGA-Based Channel Emulator for Non-Stationary MIMO Fading Channels. Appl. Sci. 2020, 10, 4161. [Google Scholar] [CrossRef]
- Sakata, T.; Yamamoto, A.; Ogawa, K.; Iwai, H.; Takada, J.; Sakaguchi, K. A Spatial Fading Emulator for Evaluation of MIMO Antennas in a Cluster Environment. IEICE Trans. Commun. 2014, 97, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Carreno, X.; Kyosti, P.; Nielsen, J.O.; Pedersen, G.F. Over-the-Air Testing of MIMO-Capable Terminals: Evaluation of Multiple-Antenna Systems in Realistic Multipath Propagation Environments Using an OTA Method. IEEE Veh. Technol. Mag. 2015, 10, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Khatun, A.; Kolmonen, V.-M.; Hovinen, V.; Parveg, D.; Berg, M.; Haneda, K.; Nikoskinen, K.I.; Salonen, E.T. Experimental Verification of a Plane-Wave Field Synthesis Technique for MIMO OTA Antenna Testing. IEEE Trans. Antennas Propag. 2016, 64, 3141–3150. [Google Scholar] [CrossRef]
- Shen, P.; Qi, Y.; Yu, W.; Fan, J.; Li, F. OTA Measurement for IoT Wireless Device Performance Evaluation: Challenges and Solutions. IEEE Internet Things J. 2019, 6, 1223–1237. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Z.; Hao, Z.-C.; Hong, W. A Novel Probe Selection Method for MIMO OTA Performance Testing. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2359–2362. [Google Scholar] [CrossRef]
- Kyösti, P.; Fan, W.; Pedersen, G.F.; Latva-Aho, M. On Dimensions of OTA Setups for Massive MIMO Base Stations Radiated Testing. IEEE Access 2016, 4, 5971–5981. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Wu, Y.; Tang, B.; Zhang, W.; Liu, Y. Probe Selection for 5G Massive MIMO Base Station Over-the-Air Testing. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1998–2002. [Google Scholar] [CrossRef]
- Li, K.; Honda, K.; Ogawa, K. Rice Channel Realization for BAN Over-The-Air Testing Using a Fading Emulator with an Arm-Swinging Dynamic Phantom. IEICE Trans. Commun. 2015, 98, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Li, K. A method of controlling the base station correlation for MIMO-OTA based on Jakes model. IEICE Commun. Express 2016, 5, 297–302. [Google Scholar] [CrossRef]
- Honda, K.; Li, K. Three-dimensional MIMO-OTA calibration to achieve the Gaussian angular power spectra in elevation. IEICE Commun. Express 2016, 5, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Honda, K.; Ogawa, K. Dual-Discrete Processing for Bit-Error-Rate OTA Testing in Shadowing-Fading BAN Channels. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1200–1204. [Google Scholar] [CrossRef]
- Honda, K.; Fukushima, T.; Ogawa, K. Full-Azimuth Beam Steering MIMO Antenna Arranged in a Daisy Chain Array Structure. Micromachines 2020, 11, 871. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Kitao, K.; Imai, T.; Okumura, Y. Comparative Evaluation of Space-MIMO and Polarized-MIMO in Urban Small Cell. IEICE Tech. Rep. 2013, 113, 25–30. [Google Scholar]
- Saunders, S.R.; Aragon-Zavala, A. Antennas and Propagation for Wireless Communication Systems, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 393–399. [Google Scholar]
- Yamamoto, A.; Hayashi, T.; Ogawa, K.; Olesen, K.; Nielsen, J.O.; Pedersen, G.F. Probe Outdoor Urban Propagation Experiment of a Handset MIMO Antenna with a Human Phantom in Browsing Position. In Proceedings of the 2007 IEEE 66th Vehicular Technology Conference (VTC Fall 2007), Baltimore, MD, USA, 30 September–3 October 2007; pp. 849–853. [Google Scholar]
- Clarke, R.H. A Statistical theory of mobile radio communication. Bell Syst. Tech. J. 1968, 47, 957–1000. [Google Scholar] [CrossRef]
- Yamada, Y.; Kagoshima, K.; Tsunekawa, K. Diversity Antennas for Base and Mobile Stations in Land Mobile Communication Systems. IEICE Trans. Commun. 1991, 74, 3202–3209. [Google Scholar]
- Jakes, W.C. Microwave Mobile Communications; IEEE Press: Piscataway, NJ, USA, 1974. [Google Scholar]
- Karasawa, Y. Statistical Multipath Propagation Modeling for Broadband Wireless Systems. IEICE Trans. Commun. 2007, 90, 468–484. [Google Scholar] [CrossRef]
- Honda, K.; Kitamura, T.; Li, K.; Ogawa, K. Regression-Based Channel Capacity for the Evaluation of 2 × 2 MIMO Antennas. IEICE Trans. Commun. 2017, 100, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Calero, C.; Martinez-Rodriguez-Osorio, R. Influence of Array Configuration on MIMO Channel Capacity. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium (AP-S 2008), San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar]
- Imai, T.; Okano, Y.; Koshino, K.; Saito, K.; Miura, S. Theoretical Analysis of Adequate Number of Probe Antennas in Spatial Channel Emulator for MIMO Performance Evaluation of Mobile Terminals. In Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, 1–5 April 2010; pp. 1–5. [Google Scholar]
- Nishimori, K.; Makise, Y.; Kudo, R.; Tsunekawa, K. Channel Capacity Measurement of 8 × 2 MIMO Transmission by Antenna Configurations in an Actual Cellular Environment. IEEE Trans. Antennas Propag. 2006, 54, 3285–3291. [Google Scholar] [CrossRef]
- Furukura, R.; Honda, K.; Ogawa, K. A Measurement Method of MIMO Channel Capacity Considering the Base Station Correlation in 3D MIMO-OTA. In Proceedings of the 2018 IEEE International Workshop on Electromagnetics (iWEM 2018), Nagoya, Japan, 29–31 August 2018; pp. 139–140. [Google Scholar]
- Ciuonzo, D.; Romano, G.; Rossi, P.S. Channel-Aware Decision Fusion in Distributed MIMO Wireless Sensor Networks: Decode-and-Fuse vs. Decode-then-Fuse. IEEE Trans. Wirel. Commun. 2012, 11, 2976–2985. [Google Scholar] [CrossRef]
- Banaa, A.-S.; Carvalhoa, E.d.; Soreta, B.; Abrãob, T.; Marinellob, J.C.; Larssonc, E.G.; Popovski, P. Massive MIMO for Internet of Things (IoT) connectivity. Phys. Commun. 2019, 37, 100859. [Google Scholar] [CrossRef] [Green Version]
- MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [Google Scholar] [CrossRef]
- Kitamura, R.; Ogawa, K.; Honda, K. 256 × 256 Large-Scale Pancake MIMO Antenna. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP 2020), Osaka, Japan, 25–28 January 2021; pp. 509–510. [Google Scholar]
- Honda, K.; Ogawa, K. Over-the-Air Apparatus for Large-Scale MIMO Antennas to Create the Full-Rank Channel Matrix. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP 2020), Osaka, Japan, 25–28 January 2021; pp. 547–548. [Google Scholar]
Method | Target | Issues Focused on |
---|---|---|
Reverberation chamber based method | Mobile terminal | Using a universal software radio peripheral [9] 2 × 2 MIMO, NLOS, 28 GHz [10] |
Two-stage method | Mobile terminal | 3D channel model, active antenna array [11] Non-Stationary channel model [12] |
Multiple probe antenna based method | Mobile terminal | Cluster environment [13] Channel emulation technique [14] Plane-wave field synthesis [15] Bit error rate, IoT wireless device [16] 3D channel model, probe selection [17] |
Base station | Radiated testing of massive MIMO [18] Probe selection algorithm [19] |
Frequency | 1.95 GHz |
Number of MIMO antennas | 4 |
Arrangement of MIMO antenna | Quasi-liner array |
MIMO antenna element | Half-wavelength dipole |
Interval of MIMO antenna | 0.5 λ |
Number of BS antennas | 4 |
Angular spread of the incident wave | 1.5° |
Number of probes | 14 |
Traveling distance | 5000 |
Number of samplings | 5000 |
XPR | Vertical polarization only |
Method of EM analysis | Method of moments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honda, K. A Method of Implementing a 4 × 4 Correlation Matrix for Evaluating the Uplink Channel Properties of MIMO Over-the-Air Apparatus. Sensors 2021, 21, 6184. https://doi.org/10.3390/s21186184
Honda K. A Method of Implementing a 4 × 4 Correlation Matrix for Evaluating the Uplink Channel Properties of MIMO Over-the-Air Apparatus. Sensors. 2021; 21(18):6184. https://doi.org/10.3390/s21186184
Chicago/Turabian StyleHonda, Kazuhiro. 2021. "A Method of Implementing a 4 × 4 Correlation Matrix for Evaluating the Uplink Channel Properties of MIMO Over-the-Air Apparatus" Sensors 21, no. 18: 6184. https://doi.org/10.3390/s21186184
APA StyleHonda, K. (2021). A Method of Implementing a 4 × 4 Correlation Matrix for Evaluating the Uplink Channel Properties of MIMO Over-the-Air Apparatus. Sensors, 21(18), 6184. https://doi.org/10.3390/s21186184