EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features
Abstract
:1. Introduction
- Developing an experimental protocol to induce two levels of mental stress (stress/rest or control) in a short time, which is important for real-life application.
- A multi-domain feature set is proposed by fusing features from the time domain, frequency domain, and functional connectivity networks.
- A feature selection method was implemented to select the most discriminative feature sets.
- The performance of the proposed method is tested and evaluated using seven machine learning classifiers.
2. Dataset and Materials
2.1. Participants
2.2. Stress EEG Measurement and Protocol
2.3. Dataset Labelling
3. EEG Base Mental Stress Analysis Method
3.1. Signal Preprocessing
3.2. Feature Extraction
3.2.1. Time-Domain Features (TDFs)
- Hjorth Activity: The activity measure represents the signal power and measures the variance of a time function using the equation.
- Hjorth Mobility: mobility represents the mean frequency or the proportion of the standard deviation of the signal and is denoted by:
- Hjorth complexity: the complexity parameter gives an estimate of the bandwidth of the signal, which indicates the similarity of the shape of the signal to a pure sine wave.All these extracted features were then fed as an input to the classifiers.
3.2.2. Frequency-Domain Features (FDFs)
3.2.3. Functional Connectivity Network
3.3. Hybrid Features of Time, Frequency Domain and Connectivity Features
4. Classification
- True Positives (Tp): The number of labels correctly identified as stress conditions.
- True Negatives (Tn): The number of labels correctly identified as a rest condition.
- False Positives (Fp): The number of labels incorrectly identified as stress.
- False Negatives (Fn): The number of labels incorrectly identified as rest.
5. Result and Analysis
5.1. Statistical Analysis
5.2. Classification Results
- •
- The best classification accuracy was obtained by using the peak-to-peak amplitude feature with four channels (‘F7’, ‘F3’, ‘Fz’, and ‘F8’) of the frontal region with a mean accuracy of 79.4% using Random Forest and 76.1% using SVM. Meanwhile, the rest of the classifiers achieved an average accuracy of 75% for .
- •
- The Hjorth parameters of complexity, mobility, and activity achieved a result of an average of 69.1%, 71.5%, and 71.8% using KNN, SVM, and NB, respectively. The significant channels of Hjorth complexity and mobility were located in the prefrontal cortex (‘Fp1’, ‘F3’, and ‘F4’), while Hjorth activity had only two significant channels that were selected from the left frontal cortex of (‘F7’ and ‘F3’).
- •
- Features with a low number of channels tends to achieve low accuracy due to low spatial resolution. Kurtosis and skewness got one significant channel for each and obtained a maximum average accuracy of 55% and 56%, respectively, for ‘Fp1’ and ‘F4’.
- •
- The highest average accuracy achieved by the relative power of the high beta band (20–30 Hz) with significant channels ‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’ was 73% accuracy with KNN and 71% with both RF and SVM.
- •
- For the lower frequencies of delta (1–4 Hz) and theta (4–8 Hz), the significant selected channels were located in the prefrontal and middle frontal cortex area of the scalp—‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’. Both achieved an average accuracy of 68% using SVM and KNN, respectively.
- •
- The lowest accuracy obtained in frequency-band features was 52.4% from sigma relative power with only one channel of ‘F7’.
- •
- Likewise, the average accuracy of alpha relative power and low betas were 63.4% and 64.5% with KNN and LDA, respectively.
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asif, A.; Majid, M.; Anwar, S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med. 2019, 107, 182–196. [Google Scholar] [CrossRef]
- Can, Y.S.; Arnrich, B.; Ersoy, C. Stress Detection in Daily Life Scenarios Using Smart Phones and Wearable Sensors: A Survey. J. Biomed. Inform. 2019, 92, 103139. [Google Scholar] [CrossRef]
- Song, H.; Fang, F.; Arnberg, F.K.; Mataix-Cols, D.; De La Cruz, L.F.; Almqvist, C.; Fall, K.; Lichtenstein, P.; Thorgeirsson, G.; Valdimarsdóttir, U.A. Stress related disorders and risk of cardiovascular disease: Population based, sibling controlled cohort study. BMJ 2019, 365, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanding, M. Workplace Stress Responsible for up to $190B in Annual U.S. Healthcare Costs. In HBS Working Knowledge; Forbes: Jersey City, NJ, USA, 2015; Available online: https://www.forbes.com/sites/hbsworkingknowledge/2015/01/26/workplace-stress-responsible-for-up-to-190-billion-in-annual-u-s-heathcare-costs/?sh=59952af2235a (accessed on 9 July 2021).
- Daudelin-Peltier, C.; Forget, H.; Blais, C.; Deschênes, A.; Fiset, D. The effect of acute social stress on the recognition of facial expression of emotions. Sci. Rep. 2017, 7, 1036. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Almeida, P.R.; Cunha, J.P.; Aguiar, A. Heart rate variability metrics for fine-grained stress level assessment. Comput. Methods Programs Biomed. 2017, 148, 71–80. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385. [Google Scholar] [CrossRef]
- Nagar, P.; Sethia, D. Brain Mapping Based Stress Identification Using Portable EEG Based Device. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; Volume 2061, pp. 601–606. [Google Scholar]
- Sanay, M.U.S.; Syed, M.A.; Majid, M. Quantification of Human Stress Using Commercially Available Single Channel EEG Headset. IEICE Trans. Inf. Syst. 2017, 100, 2241–2244. [Google Scholar] [CrossRef] [Green Version]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Br. J. Psychiatry 1983, 134, 382–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Stress Assessment by Prefrontal Relative Gamma. Front. Comput. Neurosci. 2016, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Poole, K.L.; Schmidt, L.A. Frontal brain delta-beta correlation, salivary cortisol, and social anxiety in children. J. Child Psychol. Psychiatry Allied Discip. 2019, 60, 646–654. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Tang, T.B.; Kiguchi, M. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: An fNIRS-EEG study. Biomed. Opt. Express 2017, 8, 2583. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Nahar, N.K.; Hayes, J.R.; Sheedy, J.E. Asthenopia and Blink Rate Under Visual and Cognitive Loads. Optom. Vis. Sci. 2012, 89, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Barreto, A.; Zhai, J.; Adjouadi, M. Non-intrusive Physiological Monitoring for Automated Stress Detection in Human-Computer Interaction. In Human–Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–38. [Google Scholar] [CrossRef]
- Davis, M.S. Voice Stress Analysis. In The Concise Dictionary of Crime and Justice; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2012. [Google Scholar] [CrossRef]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. 2019, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Veluvolu, K.C. Evolutionary algorithm based feature optimization for multi-channel EEG classification. Front. Neurosci. 2017, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Lu, Y.N.; Yu, M.A.; Yuanyuan, W. Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement. Expert Syst. Appl. 2019, 31, 188–203. [Google Scholar] [CrossRef]
- Jung, Y.; Yoon, Y.I. Multi-level assessment model for wellness service based on human mental stress level. Multimed. Tools Appl. 2017, 76, 11305–11317. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Khalilzadeh, M.A.; Naghibi-Sistani, M.B.; Homam, S.M. Emotional stress recognition using a new fusion link between electroencephalogram and peripheral signals. Iran. J. Neurol. 2015, 14, 142–151. [Google Scholar] [PubMed]
- Xu, Q.; Nwe, T.L.; Guan, C. Cluster-Based Analysis for Personalized Stress. IEEE J. Biomed. Health Inform. 2015, 19, 275–281. [Google Scholar] [CrossRef]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 2005, 30, 319. [Google Scholar]
- Ullah, I.; Hussain, M.; Qazi, E.U.H.; Aboalsamh, H. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. 2018, 107, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Dubois, J.; Adolphs, R. Building a Science of Individual Differences from fMRI. Feature Rev. 2016, 20, 425–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartenstein, P. PET in neuroscience. Nuklearmedizin 2004, 43, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Simultaneous measurement of EEG-fNIRS in classifying and localizing brain activation to mental stress. In Proceedings of the IEEE 2015 International Conference on Signal and Image Processing Applications ICSIPA, Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 282–286. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018, 56, 125–136. [Google Scholar] [CrossRef]
- Shon, D.; Im, K.; Park, J.H.; Lim, D.S.; Jang, B.; Kim, J.M. Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals. Int. J. Environ. Res. Public Health 2018, 15, 2461. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R. Emotion Recognition via EEG Using Neural Network Classifier. Adv. Intell. Syst. Comput. 2018, 583, 429–438. [Google Scholar] [CrossRef]
- Sriramprakash, S.; Prasanna, V.D.; Murthy, O.V. Stress Detection in Working People. Procedia Comput. Sci. 2017, 115, 359–366. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Chen, X.; Lu, T.; Zhao, C.; Ren, J.; Ji, X. Research on the Method of Evaluating Psychological Stress by EEG. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 042033. [Google Scholar] [CrossRef]
- Keshmiri, S. Conditional Entropy: A Potential Digital Marker for Stress. Entropy 2021, 23, 286. [Google Scholar] [CrossRef] [PubMed]
- Attallah, O. An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics 2020, 10, 292. [Google Scholar] [CrossRef]
- Saeed, S.M.U.; Anwar, S.M.; Khalid, H.; Majid, M.; Bagci, U. EEG Based Classification of Long-Term Stress Using Psychological Labeling. Sensors 2020, 20, 1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katmah, R.; Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Mughairbi, F.; Al-Nashash, H. A Review on Mental Stress Assessment Methods Using EEG Signals. Sensors 2021, 21, 5043. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S.H. EEG-based workers’ stress recognition at construction sites. Autom. Constr. 2018, 93, 315–324. [Google Scholar] [CrossRef]
- Ahuja, R.; Banga, A. Mental stress detection in university students using machine learning algorithms. Procedia Comput. Sci. 2019, 152, 349–353. [Google Scholar] [CrossRef]
- Halim, Z.; Rehan, M. On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning. Inf. Fusion 2020, 53, 66–79. [Google Scholar] [CrossRef]
- Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. Appl. Sci. 2017, 7, 1239. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Abbod, M.; Shieh, J.S. Pain and Stress Detection Using Wearable Sensors and Devices—A Review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, X.; Ruan, J.; LV, Z.; Zhang, L. How many channels are suitable for independent component analysis in motor imagery brain-computer interface. Biomed. Signal Process. Control 2019, 50, 103–120. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kim, J.M. A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals. Brain Sci. 2019, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 2016, 7, 3882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.T.; Savage, E.; Vartanian, O.; Smith, S.; Rhind, S.G.; Tenn, C.; Bjamason, S. Performance Evaluation of a Salivary Amylase Biosensor for Stress Assessment in Military Field Research. J. Clin. Lab. Anal. 2016, 30, 223–230. [Google Scholar] [CrossRef]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Garcia, S.; Claude, U.; Brodbeck, C.; Goj, R.; Jas, M.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, L.T.; Stanfield, C.T.; Vela, R.D. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals. Front. Neurosci. 2017, 11, 425. [Google Scholar] [CrossRef]
- Ingle, R.; Oimbe, S.; Kehri, V.; Awale, R.N. Classification of EEG Signals during Meditation and Controlled State Using PCA, ICA, LDA and Support Vector Machines. Int. J. Pure Appl. Math. 2018, 118, 3179–3190. [Google Scholar]
- Li, X.; Hu, B.; Sun, S.; Cai, H. EEG-based mild depressive detection using feature selection methods and classifiers. Comput. Methods Programs Biomed. 2016, 136, 151–161. [Google Scholar] [CrossRef]
- Blanco, S.; Garcia, H.; Quiroga, R.; Romanelli, L.; Rosso, O. Stationarity of the EEG series. IEEE Eng. Med. Biol. Mag. 1995, 14, 395–399. [Google Scholar] [CrossRef]
- Seraj, E.; Sameni, R. Robust electroencephalogram phase estimation with applications in brain-computer interface systems. Physiol. Meas. 2017, 38, 501–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraschini, M.; Demuru, M.; Crobe, A.; Marrosu, F.; Stam, C.J.; Hillebrand, A. The effect of epoch length on estimated EEG functional connectivity and brain network organisation. J. Neural Eng. 2016, 13, 036015. [Google Scholar] [CrossRef] [PubMed]
- Prerau, M.J.; Brown, R.E.; Bianchi, M.T.; Ellenbogen, J.M.; Purdon, P.L. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology 2017, 32, 60–92. [Google Scholar] [CrossRef] [Green Version]
- Al-Shargie, F.; Tariq, U.; Alex, M.; Mir, H.; Al-Nashash, H. Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study. IEEE Access 2019, 7, 143550–143562. [Google Scholar] [CrossRef]
- Gong, A.; Liu, J.; Lu, L.; Wu, G.; Jiang, C.; Fu, Y. Characteristic differences between the brain networks of high-level shooting athletes and non-athletes calculated using the phase-locking value algorithm. Biomed. Signal Process. Control 2019, 51, 128–137. [Google Scholar] [CrossRef]
- Al-Shargie, F.M.; Hassanin, O.; Tariq, U.; Al-Nashash, H. EEG-Based Semantic Vigilance Level Classification Using Directed Connectivity Patterns and Graph Theory Analysis. IEEE Access 2020, 8, 115941–115956. [Google Scholar] [CrossRef]
- Subhani, A.R.; Mumtaz, W.; Naufal, M.; Mohamed, B.I.N.; Kamel, N.; Malik, A.S. Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access 2017, 5, 13545–13556. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, P.; Chen, R.; Li, F.; Guo, L.; Li, P.; Zhang, T.; Yao, D. Predicting Inter-session Performance of SMR-Based Brain–Computer Interface Using the Spectral Entropy of Resting-State EEG. Brain Topogr. 2015, 28, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, H.; Xu, W.; Zhang, H.; Yang, L.; Zheng, S.; Shi, Y. Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Front. Hum. Neurosci. 2017, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chakladar, D.D.; Chakraborty, S. EEG based emotion classification using “correlation Based Subset Selection”. Biol. Inspired Cogn. Archit. 2018, 24, 98–106. [Google Scholar] [CrossRef]
- Al-shargie, F.; Tang, T.B.; Badruddin, N.; Dass, S.C.; Kiguchi, M. Mental stress assessment based on feature level fusion of fNIRS and EEG signals. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Al-shargie, F.M.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Mental Stress Quantification Using EEG Signals. In International Conference for Innovation in Biomedical Engineering and Life Sciences; Ibrahim, F., Usman, J., Mohktar, M.S., Ahmad, M.Y., Eds.; Springer: Singapore, 2016; pp. 15–19. [Google Scholar]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of Perceived Mental Stress Using A Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Tang, T.B.; Kiguchi, M. Stress Assessment Based on Decision Fusion of EEG and fNIRS Signals. IEEE Access 2017, 5, 19889–19896. [Google Scholar] [CrossRef]
- Al-Shargie, F. Prefrontal cortex functional connectivity based on simultaneous record of electrical and hemodynamic responses associated with mental stress. arXiv 2021, arXiv:2103.04636. preprint. [Google Scholar]
- Al-Shargie, F.; Tariq, U.; Hassanin, O.; Mir, H.; Babiloni, F.; Al-Nashash, H. Brain connectivity analysis under semantic vigilance and enhanced mental states. Brain Sci. 2019, 9, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Array Shape | Array Content |
---|---|---|
Data | 40 × 7 × 256 | Trails × channels × samples (256 Hz × 1 s) |
Label | 40 × 2 | Trail × label (stress, rest) |
No. | Classifier | Default Value |
---|---|---|
1 | SVM | C = 1.0, Kernal = Radial Basis Function (RBF), 1.0 × 10−3 |
2 | KNN | K = 5, distance function = euclidean distance |
3 | NB | variance_smoothing = 1 × 10−9 |
4 | RF | n_estimators = 100 trees, criterion = ‘gini’ |
5 | DT | criterion = ‘gini’ |
6 | LR | penalty = ‘l2’, *, tolerance = 0.0001, C = 1.0 |
7 | LDA | solver = ‘Singular value decomposition (svd)’, tolerance = 0.0001 |
Features | Sig. Channels (p < 0.001) | Performance | CART | KNN | LDA | LR | NB | RF | SVM |
---|---|---|---|---|---|---|---|---|---|
Hjorth complexity | ‘Fp1’, ‘F3’, ‘F4’ | accuracy | 0.644 ± 0.146 | 0.691 ± 0.119 | 0.671 ± 0.103 | 0.659 ± 0.118 | 0.682 ± 0.114 | 0.671 ± 0.145 | 0.677 ± 0.124 |
precision | 0.653 ± 0.151 | 0.715 ± 0.118 | 0.680 ± 0.109 | 0.672 ± 0.126 | 0.696 ± 0.116 | 0.673 ± 0.15 | 0.694 ± 0.128 | ||
recall | 0.650 ± 0.149 | 0.701 ± 0.117 | 0.675 ± 0.107 | 0.668 ± 0.123 | 0.689 ± 0.117 | 0.672 ± 0.146 | 0.688 ± 0.127 | ||
f1-score | 0.641 ± 0.149 | 0.688 ± 0.119 | 0.667 ± 0.108 | 0.656 ± 0.119 | 0.678 ± 0.118 | 0.667 ± 0.148 | 0.675 ± 0.125 | ||
Hjorth mobility | ‘Fp1’, ‘F3’, ‘F4’ | accuracy | 0.706 ± 0.127 | 0.702 ± 0.158 | 0.705 ± 0.122 | 0.516 ± 0.072 | 0.709 ± 0.129 | 0.712 ± 0.146 | 0.715 ± 0.140 |
precision | 0.711 ± 0.128 | 0.721 ± 0.159 | 0.713 ± 0.114 | 0.519 ± 0.081 | 0.715 ± 0.126 | 0.718 ± 0.140 | 0.729 ± 0.135 | ||
recall | 0.704 ± 0.124 | 0.711 ± 0.155 | 0.711 ± 0.117 | 0.519 ± 0.078 | 0.711 ± 0.124 | 0.715 ± 0.136 | 0.725 ± 0.137 | ||
f1-score | 0.703 ± 0.128 | 0.698 ± 0.160 | 0.702 ± 0.123 | 0.609 ± 0.039 | 0.707 ± 0.128 | 0.708 ± 0.147 | 0.710 ± 0.144 | ||
Hjorth activity | ‘F7’, ‘F3’ | accuracy | 0.541 ± 0.000 | 0.706 ± 0.184 | 0.655 ± 0.173 | 0.511 ± 0.001 | 0.718 ± 0.168 | 0.540 ± 0.120 | 0.688 ± 0.117 |
precision | 0.301 ± 0.000 | 0.714 ± 0.189 | 0.659 ± 0.179 | 0.431 ± 0.000 | 0.727 ± 0.164 | 0.387 ± 0.032 | 0.699 ± 0.183 | ||
recall | 0.371 ± 0.000 | 0.705 ± 0.183 | 0.656 ± 0.177 | 0.372 ± 0.000 | 0.723 ± 0.166 | 0.394 ± 0.013 | 0.691 ± 0.177 | ||
f1-score | 0.321 ± 0.000 | 0.699 ± 0.190 | 0.648 ± 0.180 | 0.321 ± 0.000 | 0.708 ± 0.177 | 0.386 ± 0.024 | 0.681 ± 0.176 | ||
Kurtosis | ‘Fp1’ | accuracy | 0.549 ± 0.118 | 0.531 ± 0.089 | 0.515 ± 0.130 | 0.517 ± 0.129 | 0.516 ± 0.136 | 0.549 ± 0.118 | 0.518 ± 0.136 |
precision | 0.551 ± 0.117 | 0.539 ± 0.107 | 0.539 ± 0.163 | 0.541 ± 0.163 | 0.511 ± 0.200 | 0.551 ± 0.117 | 0.524 ± 0.184 | ||
recall | 0.549 ± 0.115 | 0.536 ± 0.100 | 0.526 ± 0.139 | 0.526 ± 0.139 | 0.523 ± 0.147 | 0.549 ± 0.115 | 0.521 ± 0.153 | ||
f1-score | 0.544 ± 0.119 | 0.524 ± 0.095 | 0.504 ± 0.131 | 0.509 ± 0.129 | 0.484 ± 0.151 | 0.544 ± 0.119 | 0.498 ± 0.153 | ||
PTP_AMP | ‘F7’, ‘F3’, ‘Fz’, ‘F8’ | accuracy | 0.758 ± 0.127 | 0.735 ± 0.146 | 0.754 ± 0.126 | 0.401 ± 0.000 | 0.745 ± 0.152 | 0.794 ± 0.122 | 0.761 ± 0.145 |
precision | 0.764 ± 0.125 | 0.745 ± 0.144 | 0.767 ± 0.120 | 0.301 ± 0.000 | 0.752 ± 0.154 | 0.798 ± 0.119 | 0.766 ± 0.146 | ||
recall | 0.759 ± 0.125 | 0.738 ± 0.141 | 0.761 ± 0.121 | 0.371 ± 0.000 | 0.745 ± 0.162 | 0.796 ± 0.121 | 0.766 ± 0.146 | ||
f1-score | 0.754 ± 0.126 | 0.732 ± 0.146 | 0.752 ± 0.127 | 0.321 ± 0.000 | 0.734 ± 0.162 | 0.790 ± 0.123 | 0.756 ± 0.146 | ||
Skewness | ‘F4’ | accuracy | 0.561 ± 0.108 | 0.538 ± 0.101 | 0.490 ± 0.141 | 0.467 ± 0.119 | 0.490 ± 0.120 | 0.561 ± 0.108 | 0.483 ± 0.125 |
precision | 0.566 ± 0.112 | 0.546 ± 0.104 | 0.493 ± 0.148 | 0.467 ± 0.132 | 0.503 ± 0.153 | 0.566 ± 0.112 | 0.492 ± 0.154 | ||
recall | 0.564 ± 0.110 | 0.546 ± 0.101 | 0.491 ± 0.145 | 0.467 ± 0.125 | 0.491 ± 0.128 | 0.564 ± 0.110 | 0.493 ± 0.134 | ||
f1-score | 0.559 ± 0.107 | 0.533 ± 0.103 | 0.488 ± 0.140 | 0.461 ± 0.124 | 0.480 ± 0.118 | 0.559 ± 0.107 | 0.471 ± 0.134 |
Band | Sig. Channels (p < 0.001) | Performance | CART | KNN | LDA | LR | NB | RF | SVM |
---|---|---|---|---|---|---|---|---|---|
Delta | ‘Fp1’, ‘Fp2’, ‘F3’, ‘Fz’, ‘F4’ | accuracy | 0.631 ± 0.127 | 0.659 ± 0.152 | 0.680 ± 0.123 | 0.488 ± 0.069 | 0.672 ± 0.128 | 0.675 ± 0.113 | 0.682 ± 0.144 |
precision | 0.639 ± 0.122 | 0.679 ± 0.150 | 0.692 ± 0.120 | 0.488 ± 0.076 | 0.682 ± 0.128 | 0.686 ± 0.102 | 0.694 ± 0.145 | ||
recall | 0.635 ± 0.121 | 0.674 ± 0.146 | 0.689 ± 0.121 | 0.495 ± 0.066 | 0.679 ± 0.129 | 0.682 ± 0.104 | 0.690 ± 0.145 | ||
f1-score | 0.627 ± 0.127 | 0.652 ± 0.152 | 0.679 ± 0.123 | 0.481 ± 0.079 | 0.672 ± 0.128 | 0.673 ± 0.113 | 0.677 ± 0.145 | ||
Theta | ‘Fp1’, ‘Fp2’, ‘F3’, ‘Fz’, ‘F4’ | accuracy | 0.614 ± 0.088 | 0.619 ± 0.087 | 0.679 ± 0.142 | 0.473 ± 0.059 | 0.655 ± 0.118 | 0.643 ± 0.107 | 0.656 ± 0.135 |
precision | 0.614 ± 0.091 | 0.623 ± 0.100 | 0.683 ± 0.146 | 0.471 ± 0.064 | 0.662 ± 0.132 | 0.646 ± 0.107 | 0.659 ± 0.140 | ||
recall | 0.614 ± 0.091 | 0.616 ± 0.095 | 0.671 ± 0.138 | 0.475 ± 0.060 | 0.652 ± 0.119 | 0.645 ± 0.104 | 0.655 ± 0.140 | ||
f1-score | 0.611 ± 0.091 | 0.607 ± 0.097 | 0.669 ± 0.138 | 0.464 ± 0.068 | 0.647 ± 0.122 | 0.640 ± 0.103 | 0.648 ± 0.136 | ||
Alpha | ‘Fp1’, ‘Fp2’, ‘F4’ | accuracy | 0.622 ± 0.107 | 0.634 ± 0.149 | 0.634 ± 0.089 | 0.481 ± 0.070 | 0.619 ± 0.123 | 0.606 ± 0.096 | 0.622 ± 0.137 |
precision | 0.627 ± 0.108 | 0.646 ± 0.153 | 0.640 ± 0.096 | 0.477 ± 0.076 | 0.622 ± 0.126 | 0.608 ± 0.094 | 0.630 ± 0.141 | ||
recall | 0.622 ± 0.101 | 0.639 ± 0.144 | 0.633 ± 0.091 | 0.477 ± 0.076 | 0.615 ± 0.124 | 0.607 ± 0.093 | 0.626 ± 0.136 | ||
f1-score | 0.618 ± 0.105 | 0.628 ± 0.151 | 0.630 ± 0.091 | 0.474 ± 0.073 | 0.611 ± 0.122 | 0.602 ± 0.095 | 0.618 ± 0.136 | ||
Sigma | ‘F7’ | accuracy | 0.524 ± 0.101 | 0.485 ± 0.153 | 0.467 ± 0.143 | 0.422 ± 0.083 | 0.520 ± 0.145 | 0.524 ± 0.101 | 0.494 ± 0.166 |
precision | 0.532 ± 0.121 | 0.491 ± 0.161 | 0.470 ± 0.147 | 0.422 ± 0.091 | 0.522 ± 0.153 | 0.532 ± 0.120 | 0.501 ± 0.181 | ||
recall | 0.528 ± 0.111 | 0.490 ± 0.156 | 0.473 ± 0.145 | 0.422 ± 0.087 | 0.519 ± 0.150 | 0.528 ± 0.111 | 0.499 ± 0.175 | ||
f1-score | 0.521 ± 0.103 | 0.475 ± 0.156 | 0.463 ± 0.144 | 0.415 ± 0.085 | 0.510 ± 0.151 | 0.521 ± 0.103 | 0.480 ± 0.169 | ||
Low Beta | ‘Fp1’, ‘F4’ | accuracy | 0.608 ± 0.081 | 0.597 ± 0.134 | 0.646 ± 0.087 | 0.494 ± 0.050 | 0.626 ± 0.123 | 0.574 ± 0.100 | 0.617 ± 0.104 |
precision | 0.612 ± 0.082 | 0.601 ± 0.136 | 0.649 ± 0.091 | 0.489 ± 0.060 | 0.635 ± 0.124 | 0.580 ± 0.101 | 0.624 ± 0.106 | ||
recall | 0.610 ± 0.082 | 0.598 ± 0.136 | 0.647 ± 0.090 | 0.492 ± 0.055 | 0.630 ± 0.120 | 0.578 ± 0.101 | 0.618 ± 0.101 | ||
f1-score | 0.605 ± 0.081 | 0.592 ± 0.134 | 0.643 ± 0.091 | 0.488 ± 0.060 | 0.626 ± 0.123 | 0.571 ± 0.100 | 0.613 ± 0.103 | ||
High Beta | ‘Fp1’, ‘Fp2’, ‘F3’, ‘F4’ | accuracy | 0.658 ± 0.120 | 0.729 ± 0.122 | 0.726 ± 0.133 | 0.505 ± 0.069 | 0.734 ± 0.136 | 0.713 ± 0.118 | 0.714 ± 0.115 |
precision | 0.660 ± 0.105 | 0.736 ± 0.125 | 0.733 ± 0.137 | 0.505 ± 0.071 | 0.735 ± 0.135 | 0.716 ± 0.115 | 0.718 ± 0.109 | ||
recall | 0.656 ± 0.104 | 0.731 ± 0.119 | 0.726 ± 0.129 | 0.509 ± 0.065 | 0.732 ± 0.134 | 0.713 ± 0.112 | 0.716 ± 0.111 | ||
f1-score | 0.651 ± 0.111 | 0.727 ± 0.124 | 0.723 ± 0.132 | 0.499 ± 0.078 | 0.731 ± 0.137 | 0.707 ± 0.119 | 0.711 ± 0.116 |
Features | Performance | CART | KNN | LDA | LR | NB | RF | SVM |
---|---|---|---|---|---|---|---|---|
Delta_PLV | accuracy | 0.678 ± 0.107 | 0.684 ± 0.141 | 0.752 ± 0.144 | 0.657 ± 0.161 | 0.718 ± 0.166 | 0.717 ± 0.150 | 0.724 ± 0.179 |
precision | 0.678 ± 0.111 | 0.691 ± 0.153 | 0.757 ± 0.142 | 0.661 ± 0.161 | 0.720 ± 0.162 | 0.719 ± 0.152 | 0.731 ± 0.182 | |
recall | 0.677 ± 0.109 | 0.681 ± 0.143 | 0.753 ± 0.140 | 0.658 ± 0.160 | 0.717 ± 0.162 | 0.713 ± 0.146 | 0.725 ± 0.177 | |
f1-score | 0.674 ± 0.108 | 0.678 ± 0.143 | 0.749 ± 0.145 | 0.653 ± 0.161 | 0.712 ± 0.165 | 0.711 ± 0.148 | 0.717 ± 0.181 | |
Theta_PLV | accuracy | 0.606 ± 0.172 | 0.681 ± 0.137 | 0.683 ± 0.129 | 0.631 ± 0.163 | 0.683 ± 0.145 | 0.629 ± 0.170 | 0.651 ± 0.179 |
precision | 0.614 ± 0.172 | 0.681 ± 0.139 | 0.687 ± 0.130 | 0.631 ± 0.168 | 0.690 ± 0.144 | 0.636 ± 0.174 | 0.651 ± 0.180 | |
recall | 0.612 ± 0.172 | 0.674 ± 0.136 | 0.685 ± 0.128 | 0.627 ± 0.164 | 0.681 ± 0.146 | 0.631 ± 0.169 | 0.649 ± 0.178 | |
f1-score | 0.604 ± 0.174 | 0.673 ± 0.137 | 0.681 ± 0.129 | 0.624 ± 0.164 | 0.676 ± 0.145 | 0.627 ± 0.169 | 0.646 ± 0.178 | |
Alpha_PLV | accuracy | 0.686 ± 0.140 | 0.662 ± 0.148 | 0.719 ± 0.177 | 0.657 ± 0.180 | 0.710 ± 0.162 | 0.699 ± 0.142 | 0.691 ± 0.143 |
precision | 0.686 ± 0.139 | 0.664 ± 0.154 | 0.719 ± 0.182 | 0.659 ± 0.181 | 0.709 ± 0.161 | 0.701 ± 0.142 | 0.696 ± 0.146 | |
recall | 0.686 ± 0.139 | 0.657 ± 0.149 | 0.713 ± 0.181 | 0.658 ± 0.181 | 0.706 ± 0.160 | 0.703 ± 0.145 | 0.687 ± 0.143 | |
f1-score | 0.682 ± 0.139 | 0.653 ± 0.152 | 0.711 ± 0.178 | 0.654 ± 0.179 | 0.707 ± 0.159 | 0.698 ± 0.143 | 0.686 ± 0.142 | |
Sigma_PLV | accuracy | 0.613 ± 0.124 | 0.675 ± 0.125 | 0.659 ± 0.125 | 0.591 ± 0.120 | 0.677 ± 0.117 | 0.629 ± 0.136 | 0.656 ± 0.131 |
precision | 0.619 ± 0.125 | 0.680 ± 0.126 | 0.662 ± 0.126 | 0.597 ± 0.122 | 0.681 ± 0.117 | 0.632 ± 0.137 | 0.659 ± 0.133 | |
recall | 0.616 ± 0.122 | 0.675 ± 0.121 | 0.657 ± 0.122 | 0.595 ± 0.121 | 0.675 ± 0.114 | 0.631 ± 0.136 | 0.656 ± 0.130 | |
f1-score | 0.611 ± 0.122 | 0.670 ± 0.124 | 0.653 ± 0.124 | 0.589 ± 0.121 | 0.672 ± 0.118 | 0.626 ± 0.136 | 0.655 ± 0.130 | |
L_beta_PLV | accuracy | 0.663 ± 0.148 | 0.628 ± 0.134 | 0.679 ± 0.163 | 0.595 ± 0.132 | 0.655 ± 0.127 | 0.642 ± 0.137 | 0.641 ± 0.183 |
precision | 0.663 ± 0.144 | 0.635 ± 0.145 | 0.686 ± 0.162 | 0.604 ± 0.137 | 0.659 ± 0.126 | 0.641 ± 0.137 | 0.642 ± 0.186 | |
recall | 0.663 ± 0.144 | 0.631 ± 0.139 | 0.683 ± 0.161 | 0.603 ± 0.132 | 0.655 ± 0.123 | 0.643 ± 0.136 | 0.640 ± 0.186 | |
f1-score | 0.659 ± 0.149 | 0.624 ± 0.136 | 0.675 ± 0.165 | 0.592 ± 0.135 | 0.653 ± 0.126 | 0.636 ± 0.140 | 0.636 ± 0.183 | |
H_beta_PLV | accuracy | 0.714 ± 0.143 | 0.680 ± 0.133 | 0.734 ± 0.145 | 0.675 ± 0.134 | 0.696 ± 0.141 | 0.719 ± 0.126 | 0.698 ± 0.137 |
precision | 0.715 ± 0.146 | 0.699 ± 0.136 | 0.738 ± 0.150 | 0.684 ± 0.137 | 0.701 ± 0.141 | 0.723 ± 0.129 | 0.708 ± 0.140 | |
recall | 0.715 ± 0.147 | 0.688 ± 0.131 | 0.734 ± 0.149 | 0.680 ± 0.133 | 0.696 ± 0.143 | 0.722 ± 0.127 | 0.702 ± 0.136 | |
f1-score | 0.710 ± 0.145 | 0.677 ± 0.132 | 0.732 ± 0.147 | 0.672 ± 0.131 | 0.691 ± 0.140 | 0.716 ± 0.126 | 0.696 ± 0.136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hag, A.; Handayani, D.; Pillai, T.; Mantoro, T.; Kit, M.H.; Al-Shargie, F. EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features. Sensors 2021, 21, 6300. https://doi.org/10.3390/s21186300
Hag A, Handayani D, Pillai T, Mantoro T, Kit MH, Al-Shargie F. EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features. Sensors. 2021; 21(18):6300. https://doi.org/10.3390/s21186300
Chicago/Turabian StyleHag, Ala, Dini Handayani, Thulasyammal Pillai, Teddy Mantoro, Mun Hou Kit, and Fares Al-Shargie. 2021. "EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features" Sensors 21, no. 18: 6300. https://doi.org/10.3390/s21186300
APA StyleHag, A., Handayani, D., Pillai, T., Mantoro, T., Kit, M. H., & Al-Shargie, F. (2021). EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features. Sensors, 21(18), 6300. https://doi.org/10.3390/s21186300