Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamentals of Seismic Reflection, Seismic Attributes and Well Logging
2.2. Seismic Data Analysis Methodology
2.2.1. Pointwise Data Clustering
2.2.2. Spatial Groups Data Clustering
2.3. Well Logs Data Analysis Methodology
2.4. Seismic and Well Logs Groups Association
- i.
- Depth–time conversion to transform both datasets to the same domain (usually seismic data are given in the time domain and well logs in the depth domain);
- ii.
- Blocking process to reduce the resolution of well logs data to the seismic data (well logs and seismic data present a resolution of 0.15 ms and 4 ms, respectively);
- iii.
- Elimination of noisy segments resultant from previous operations (groups with a size smaller than 12 ms);
- iv.
- Association between seismic and well logs groups.
- -
- : Number of pairs belonging to different well logs groups and seismic groups.
- -
- : Number of pairs belonging to different well logs groups and the same seismic groups.
- -
- : Number of pairs belonging to the same well logs groups and different seismic groups.
- -
- : Number of pairs belonging to the same well logs groups and seismic groups.
3. Results and Discussion
3.1. Seismic Data Analysis
3.1.1. Pointwise Data Clustering
3.1.2. Spatial Groups Data Clustering
- Amplitude, Quadrature, Sweetness.
- Amplitude, Instantaneous Thin Bed, Sweetness.
- Instantaneous Thin Bed, Similarity Cross Average, Energy.
- CosPhase, Similarity Cross Average, Energy.
- CosPhase, Amplitude, Energy.
- Sweetness, Amplitude, Energy.
- Amplitude, Apparent Polarity, Sweetness.
- Amplitude, Amplitude Contrast, Similarity Cross Average.
- Texture Dissimilarity, Amplitude, Similarity Cross Average.
- Texture Contrast, Amplitude, Similarity Cross Average.
- Texture Dissimilarity, Amplitude, Sweetness.
- Amplitude, Texture Dissimilarity, Freq30 Hz.
3.2. Well Logs Data Analysis
3.3. Seismic and Well Logs Groups Association
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheriff, R.E. Encyclopedic dictionary of applied geophysics. Encycl. Dict. Appl. Geophys. 2002, 13, 14–17. [Google Scholar] [CrossRef]
- Onajite, E. Understanding seismic interpretation methodology. In Seismic Data Analysis Techniques in Hydrocarbon Exploration; Elsevier: Amsterdam, The Netherlands, 2014; pp. 177–211. ISBN 978-0-12-420023-4. [Google Scholar]
- Barnes, A.E. Redundant and useless seismic attributes. Geophysics 2007, 72, P33–P38. [Google Scholar] [CrossRef]
- Onajite, E. Understanding reflection coefficient. In Seismic Data Analysis Techniques in Hydrocarbon Exploration; Elsevier: Amsterdam, The Netherlands, 2014; pp. 213–228. [Google Scholar]
- Roden, R.; Smith, T.; Sacrey, D. Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps. Interpretation 2015, 3, SAE59–SAE83. [Google Scholar] [CrossRef]
- Herron, D.A. First Steps in Seismic Interpretation; Society of Exploration Geophysicists: Tulsa, OK, USA, 2011. [Google Scholar]
- Nanda, N.C. Seismic Pitfalls. In Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production; Springer: Berlin/Heidelberg, Germany, 2016; pp. 205–217. [Google Scholar]
- Amado, L. Field case evaluations. In Reservoir Exploration and Appraisal; Amado, L.B.T.-R.E., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2013; pp. 53–156, Chapter 12; ISBN 978-1-85617-853-2. [Google Scholar]
- Kaiser, M.J. A Review of exploration, development, and production cost offshore Newfoundland. Nat. Resour. Res. 2021, 30, 1253–1290. [Google Scholar] [CrossRef]
- Wrona, T.; Pan, I.; Gawthorpe, R.L.; Fossen, H. Seismic facies analysis using machine learning. Geophysics 2018, 83, O83–O95. [Google Scholar] [CrossRef]
- Li, D.; Peng, S.; Lu, Y.; Guo, Y.; Cui, X. Seismic structure interpretation based on machine learning: A case study in coal mining. Interpretation 2019, 7, SE69–SE79. [Google Scholar] [CrossRef]
- Di, H.; Wang, Z.; AlRegib, G. Why using CNN for seismic interpretation? An investigation. In Proceedings of the 2018 SEG International Exposition and Annual Meeting, SEG 2018, Keystone, CO, USA, 22–25 September 2018; Society of Exploration Geophysicists: Tulsa, OK, USA, 2019; pp. 2216–2220. [Google Scholar]
- Chevitarese, D.S.; Szwarcman, D.; Brazil, E.V.; Zadrozny, B. Efficient classification of seismic textures. In Proceedings of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; Volume 2018. [Google Scholar]
- Hajizadeh, Y. Machine learning in oil and gas; a SWOT analysis approach. J. Pet. Sci. Eng. 2019, 176, 661–663. [Google Scholar] [CrossRef]
- Ali, A.; Sheng-Chang, C. Characterization of well logs using K-mean cluster analysis. J. Pet. Explor. Prod. Technol. 2020, 10, 2245–2256. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K.; Sharma, R. Unsupervised machine learning facies classification in the Delaware Basin and its comparison with supervised Bayesian facies classification. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Tulsa, OK, USA, 2019; pp. 2619–2623. [Google Scholar]
- Song, C.; Liu, Z.; Cai, H.; Wang, Y.; Li, X.; Hu, G. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means. J. Geophys. Eng. 2017, 14, 1535–1543. [Google Scholar] [CrossRef]
- Figueiredo, A.M.; Silva, F.B.; Silva, P.M.; Martins, L.D.O.; Milidiú, R.L.; Gattass, M. A Clustering-based Approach to Map 3D Seismic Horizons. In Proceedings of the 14th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 3–6 August 2015; Society of Exploration Geophysicists: Tulsa, OK, USA, 2015; pp. 1166–1170. [Google Scholar]
- Chen, L.; Xiao, C.; Yu, J.; Wang, Z. Fault detection based on AP clustering and PCA. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1850001. [Google Scholar] [CrossRef]
- Lomask, J.; Clapp, R.G.; Biondi, B. Application of image segmentation to tracking 3D salt boundaries. Geophysics 2007, 72, P47–P56. [Google Scholar] [CrossRef]
- Halpert, A.D.; Clapp, R.G.; Biondi, B. Seismic image segmentation with multiple attributes. In Proceedings of the 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, Houston, TX, USA, 25–30 October 2009; Society of Exploration Geophysicists: Tulsa, OK, USA, 2009; pp. 3700–3704. [Google Scholar]
- Al-Shuhail, A.A.; Al-Dossary, S.A.; Mousa, W.A.-H. Seismic Data Interpretation Using Digital Image Processing; Wiley: Hoboken, NJ, USA, 2017; ISBN 9781118881781. [Google Scholar]
- Qian, F.; Yin, M.; Liu, X.Y.; Wang, Y.J.; Lu, C.; Hu, G.M. Unsupervised seismic facies analysis via deep convolutional autoencoders. Geophysics 2018, 83, A39–A43. [Google Scholar] [CrossRef]
- Silvany, P.; Machado, M.; de Tarzo, T. Prestack seismic facies prediction via deep convolutional autoencoders: An application to a turbidite reservoir. In Proceedings of the 16th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 19–22 August 2019. [Google Scholar]
- Lu, P.; Morris, M.; Brazell, S.; Comiskey, C.; Xiao, Y. Using generative adversarial networks to improve deep-learning fault interpretation networks. Lead. Edge 2018, 37, 578–583. [Google Scholar] [CrossRef]
- Luo, F.; Zhang, L.; Du, B.; Zhang, L. Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5336–5353. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Zhang, L. Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5085–5102. [Google Scholar] [CrossRef]
- Chopra, S.; Lubo-Robles, D.; Marfurt, K. Explorer; AAPG: Tulsa, OK, USA, 2018; pp. 22–29. [Google Scholar]
- Wang, Z.; Di, H.; Shafiq, M.A.; Alaudah, Y.; Alregib, G. Successful leveraging of image processing and machine learning in seismic structural interpretation: A review. Lead. Edge 2018, 37, 451–461. [Google Scholar] [CrossRef]
- Waldeland, A.U.; Jensen, A.C.; Gelius, L.-J.; Solberg, A.H.S. Convolutional neural networks for automated seismic interpretation. Lead. Edge 2018, 37, 529–537. [Google Scholar] [CrossRef]
- Schlumberger Limited. Log Interpretation Principles/Applications; Schlumberger: Houston, TX, USA, 1991. [Google Scholar]
- Cox, D.R.; Newton, A.M.W.; Huuse, M. An introduction to seismic reflection data: Acquisition, processing and interpretation. In Regional Geology and Tectonics; Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G., Bally, A.W.B.T.-R.G., Second, E.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 571–603. ISBN 978-0-444-64134-2. [Google Scholar]
- Liu, H.; Motoda, H.; Setiono, R.; Zhao, Z. Feature selection: An ever evolving frontier in data mining. In Feature Selection in Data Mining; PMLR: Hyderabad, India, 2010; pp. 4–13. [Google Scholar]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Cohen, I.; Zhou, X.S.; Tian, Q. Feature selection using principal feature analysis. In Proceedings of the 15th ACM International Conference on Multimedia, New York, NY, USA, 24–29 September 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 301–304. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 9781461468493. [Google Scholar]
- Huang, J.Z.; Ng, M.K.; Rong, H.; Li, Z. Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Celecia, A.; González, R.; Vellasco, M. Feature selection methods applied to motor imagery task classification. In Proceedings of the LA-CCI 2016 Latin American Conference on Computational Intelligence, Cartagena, Colombia, 2–4 November 2016. [Google Scholar]
- Hummel, R. Image enhancement by histogram transformation. Comput Graph. Image Process. 1977, 6, 184–185. [Google Scholar] [CrossRef]
- Beucher, S. The watershed transformation applied to image segmentation. Scanning Microsc. Int. 1991, 6, 299–314. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Fouad, S.; Randell, D.; Galton, A.; Mehanna, H.; Landini, G. Unsupervised superpixel-based segmentation of histopathological images with consensus clustering. In Proceedings of the Medical Image Understanding and Analysis, MIUA 2017, Edinburgh, UK, 11–13 July 2017; Springer: Edinburgh, UK, 2017; pp. 767–779. [Google Scholar]
- Bechar, M.E.A.; Settouti, N.; Daho, M.E.H.; Adel, M.; Chikh, M.A. Influence of normalization and color features on super-pixel classification: Application to cytological image segmentation. Australas. Phys. Eng. Sci. Med. 2019, 42, 427–441. [Google Scholar] [CrossRef]
- Liu, F.; Yin, Y.; Yang, G.; Dong, L.; Xi, X. Finger vein recognition with superpixel-based features. In Proceedings of the IJCB 2014–2014 IEEE/IAPR International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014. [Google Scholar]
- Zhang, D.; Lu, G. Review of shape representation and description techniques. Pattern Recognit. 2004, 37, 1–19. [Google Scholar] [CrossRef]
- Tighe, J.; Lazebnik, S. SuperParsing: Scalable nonparametric image parsing with superpixels. In Proceedings of the European Conference on Computer Vision, ECCV 2010, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 352–365. [Google Scholar]
- González, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008; ISBN 013168728X. [Google Scholar]
- Shi, J.; Zhang, H.; Ray, N. Solidity based local threshold for oil sand image segmentation. In Proceedings of the International Conference on Image Processing, ICIP, Cairo, Egypt, 7–10 November 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 2385–2388. [Google Scholar]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Weldon, T.P.; Higgins, W.E. Design of multiple Gabor filters for texture segmentation. In Proceedings of the 1996 IEEE International Conference on Acoustics Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; Volume 4, pp. 2243–2246. [Google Scholar]
- Déniz, O.; Bueno, G.; Salido, J.; De La Torre, F. Face recognition using histograms of oriented gradients. Pattern Recognit. Lett. 2011, 32, 1598–1603. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data; Kaufman, L., Rousseeuw, P.J., Eds.; Wiley Series in Probability and Statistics; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1990; ISBN 9780470316801. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Real, R.; Vargas, J.M. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [Google Scholar] [CrossRef]
- Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, X. Application and visualization of typical clustering algorithms in seismic data analysis. Procedia Comput. Sci. 2019, 151, 171–178. [Google Scholar] [CrossRef]
- Meyer-Baese, A.; Schmid, V. Feature selection and extraction. In Pattern Recognition and Signal Analysis in Medical Imaging; Meyer-Baese, A., Schmid, V.B.T.-P.R., Second, E., Eds.; Academic Press: Oxford, UK, 2014; Chapter 2; pp. 21–69. ISBN 978-0-12-409545-8. [Google Scholar]
- Baldi, P. Autoencoders, unsupervised learning and deep architectures. In Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, Washington, DC, USA, 2 July 2011; Volume 27, pp. 37–50. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York City, NY, USA, 2014; pp. 2672–2680. [Google Scholar]
Algorithm. | Parameter | Value |
---|---|---|
k-Means | Groups | (4–8) |
Kohonen | Groups | (4–8) |
Kohonen Map Size | (10 × 10–100 × 100) | |
Grid Shape | Rectangular; Hexagonal | |
Agglomerative | Groups | (4–8) |
Distance Metric | Euclidean; Manhattan; Cosine; L1; L2 | |
Linkage | Ward; Complete; Average; Single |
First Step | Second Step | Third Step | Fourth Step |
---|---|---|---|
GLCM | GLCM | GLCM | Neighborhood (GLCM) |
LBP | LBP | LBP | Neighborhood (LBP) |
HOG | Neighborhood (All) | Shape | Neighborhood (Statistical) |
Shape | Neighborhood (HOG) | Statistical (All) | Statistical (All) |
Statistical | Statistical (All) | Neighborhood (All) | Shape |
Neighborhood | Statistical (Histogram) | Neighborhood (GLCM) | GLCM |
Shape | Neighborhood (LBP) | ||
Neighborhood (Statistical) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celecia, A.; Figueiredo, K.; Rodriguez, C.; Vellasco, M.; Maldonado, E.; Silva, M.A.; Rodrigues, A.; Nascimento, R.; Ourofino, C. Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool. Sensors 2021, 21, 6347. https://doi.org/10.3390/s21196347
Celecia A, Figueiredo K, Rodriguez C, Vellasco M, Maldonado E, Silva MA, Rodrigues A, Nascimento R, Ourofino C. Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool. Sensors. 2021; 21(19):6347. https://doi.org/10.3390/s21196347
Chicago/Turabian StyleCelecia, Alimed, Karla Figueiredo, Carlos Rodriguez, Marley Vellasco, Edwin Maldonado, Marco Aurélio Silva, Anderson Rodrigues, Renata Nascimento, and Carla Ourofino. 2021. "Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool" Sensors 21, no. 19: 6347. https://doi.org/10.3390/s21196347
APA StyleCelecia, A., Figueiredo, K., Rodriguez, C., Vellasco, M., Maldonado, E., Silva, M. A., Rodrigues, A., Nascimento, R., & Ourofino, C. (2021). Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool. Sensors, 21(19), 6347. https://doi.org/10.3390/s21196347