The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation and Investigation Procedure
2.2. PS-OCT and Raman Spectroscopic Measurement Systems
3. Measurements and Data Processing
3.1. Polarization-Sensitive Optical Coherence Tomography (PS-OCT) Measurements
3.2. Analysis of the Backscattered Light Intensity
3.3. Polarization-Sensitive Analysis in the Bones Evaluation
3.4. Raman Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hung, C.T.; Allen, F.D.; Pollack, S.R.; Brighton, C.T. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J. Biomech. 1996, 29, 1411–1417. [Google Scholar] [CrossRef]
- Dvorak, M.M.; Riccardi, D. Ca2+ as an extracellular signal in bone. Cell Calcium 2004, 35, 249–255. [Google Scholar] [CrossRef]
- Rubin, M.A.; Jasiuk, I.; Taylor, J.; Rubin, J.; Ganey, T.; Apkarian, R.P. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003, 33, 270–282. [Google Scholar] [CrossRef]
- Olszta, M.J.; Cheng, X.; Jee, S.S.; Kumar, R.; Kim, Y.Y.; Kaufman, M.J.; Douglas, E.P.; Gower, L.B. Bone structure and formation: A new perspective. Mater. Sci. Eng. R Res. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Eliaz, N.; Metoki, N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, R.; Kirk, S.; Tronci, G.; Yang, X.; Wood, D. Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type I collagen. Mater. Sci. Eng. C 2017, 77, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.; Daulton, T.L.; Genin, G.M.; Lipner, J.; Pasteris, J.D.; Wopenka, B.; Thomopoulos, S. The nanometre-scale physiology of bone: Steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J. R. Soc. Interface 2012, 9, 1774–1786. [Google Scholar] [CrossRef] [Green Version]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Orgel, J.P.R.O.; Irving, T.C.; Miller, A.; Wess, T.J. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005. [Google Scholar] [CrossRef] [Green Version]
- Haverty, D.; Tofail, S.A.M.; Stanton, K.T.; McMonagle, J.B. Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis. Phys. Rev. B Condens. Matter 2005, 71, 094103. [Google Scholar] [CrossRef]
- Leventouri, T. Synthetic and biological hydroxyapatites: Crystal structure questions. Biomaterials 2006, 27, 3339–3342. [Google Scholar] [CrossRef] [PubMed]
- Fried, D.; Xie, J.; Shafi, S.; Featherstone, J.D.; Breunig, T.M.; Le, C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt. 2002, 7, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Tortora, G.J.; Derrickson, B. Principles of Anatomy and Physiology, 15th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 171–193. [Google Scholar]
- Stern, P.H. (Ed.) Bone Regulators and Osteoporosis Therapy; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Schreiber, J.J.; Anderson, P.A.; Rosas, H.G.; Buchholz, A.L.; Au, A.G. Hounsfield Units for Assessing Bone Mineral Density and Strength: A Tool for Osteoporosis Management. J. Bone Jt. Surg. 2011, 93, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.M.C.C.; Freitas, D.Q.; Ambrosano, G.M.B.; Bóscolo, F.N.; Almeida, S.M. Bone density: Comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography. Braz. Oral Res. 2012, 26, 550–556. [Google Scholar] [CrossRef]
- Prokop, M. Radiation Dose and Image Quality. In Spiral and Multislice Computed Tomography of the Body; Prokop, M., Galanski, M., Van Der Molen, A.J., Schaefer-Prokop, C., Eds.; Thieme Medical Publishers: Stuttgard, Germany, 2001; pp. 131–160. [Google Scholar]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Yaroslavsky, I.V.; Yaroslavsky, A.N.; Goldbach, T.; Schwarzmaier, H.-J. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. Appl. Opt. 1996, 35, 6797–6809. [Google Scholar] [CrossRef]
- Ugryumova, N.; Matcher, S.J.; Attenburrow, D.P. Measurement of bone mineral density via light scattering. Phys. Med. Biol. 2004, 49, 469–483. [Google Scholar] [CrossRef]
- Pluciński, J. Time-of-flight spectroscopy for medical applications. Proc. SPIE 2004, 5566, 132–139. [Google Scholar] [CrossRef]
- Inagaki, T.; Tsuchikawa, S. Time-of-Flight Spectroscopy. In Near-Infrared Spectroscopy; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B., Eds.; Springer: Singapore, 2021; pp. 265–275. [Google Scholar] [CrossRef]
- Haisch, C. Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 2012, 23, 012001. [Google Scholar] [CrossRef]
- Yeh, C.; Soetikno, B.T.; Hu, S.; Maslov, K.I.; Wang, L.V. Microvascular quantification based on contour-scanning photoacoustic microscopy. J. Biomed. Opt. 2014, 19, 096011. [Google Scholar] [CrossRef] [Green Version]
- Enfield, L.C.; Cantanhede, G.; Westbroek, D.; Douek, M.; Purushotham, A.D.; Hebden, J.C.; Gibson, A.P. Monitoring the Response to Primary Medical Therapy for Breast Cancer Using Three-Dimensional Time-Resolved Optical Mammography. Technol. Cancer Res. Treat. 2011, 10, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Okawa, S. Diffuse optical tomography: Present status and its future. Opt. Rev. 2014, 21, 185–205. [Google Scholar] [CrossRef]
- Lim, J.; Ayoub, A.B.; Antoine, E.E.; Psaltis, D. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl. 2019, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Stanly, T.A.; Suman, R.; Rani, G.F.; O’Toole, P.J.; Kaye, P.M.; Hitchcock, I.S. Quantitative Optical Diffraction Tomography Imaging of Mouse Platelets. Front. Physiol. 2020, 11, 568087. [Google Scholar] [CrossRef]
- Oldham, M. Optical-CT scanning of polymer gels. J. Phys. Conf. Ser. 2004, 3, 122–135. [Google Scholar] [CrossRef]
- Sharpe, J. Optical Projection Tomography. Annu. Rev. Biomed. Eng. 2004, 6, 209–229. [Google Scholar] [CrossRef] [PubMed]
- Trull, A.K.; van der Horst, J.; Bijster, J.G.; Kalkman, J. Transmission optical coherence tomography based measurement of optical material properties. Opt. Express 2015, 23, 33550–33563. [Google Scholar] [CrossRef]
- Trull, A.K.; van der Horst, J.; Bijster, J.G.; Kalkman, J. Transmission optical coherence tomography sensing. Proc. SPIE 2016, 9899, 98991M. [Google Scholar] [CrossRef]
- Wang, R.K.; Tuchin, V.V. Optical Coherence Tomography: Light Scattering and Imaging Enhancement. In Handbook of Coherent-Domain Optical Methods, Biomedical Diagnostics, Environmental Monitoring, and Materials Science, 2nd ed.; Tuchin, V.V., Ed.; Springer: New York, NY, USA, 2013; p. 665. [Google Scholar]
- Antoniuk, P.; Strąkowski, M.R.; Pluciński, J.; Kosmowski, B.B. Non-Destructive Inspection of Anti-Corrosion Protective Coatings Using Optical Coherent Tomography. Metrol. Meas. Syst. 2012, 19, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, J.G.; Drexler, W. Introduction to OCT. In Optical Coherence Tomography, Technology and Applications, 2nd ed.; Drexler, W., Fujimoto, J.G., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–64. [Google Scholar]
- Maitland, D.J.; Walsh, J.T., Jr. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med. 1998, 20, 310–318. [Google Scholar] [CrossRef]
- Appleford, M.R.; Oh, S.; Oh, N.; Ong, J.L. In Vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. Part A 2009, 89A, 1019–1027. [Google Scholar] [CrossRef]
- Piao, D.; Zhu, Q.; Dutta, N.K.; Yan, S.; Otis, L.L. Cancellation of coherent artifacts in optical coherence tomography imaging. Appl. Opt. 2001, 40, 5124–5131. [Google Scholar] [CrossRef] [Green Version]
- Louie, T.M.; Jones, R.S.; Sarma, A.V.; Fried, D. Selective removal of composite sealants with near ultraviolet laser pulses of nanosecond duration. J. Biomed. Opt. 2005, 10, 014001. [Google Scholar] [CrossRef] [PubMed]
- De Melo, L.S.; de Araujo, R.E.; Freitas, A.Z.; Zezell, D.; Vieira, N.D.; Girkin, J.; Hall, A.; Carvalho, M.T.; Gomes, A.S. Evaluation of enamel dental restoration interface by optical coherence tomography. J. Biomed. Opt. 2005, 10, 064027. [Google Scholar] [CrossRef] [PubMed]
- Sinescu, C.; Negrutiu, M.L.; Todea, C.; Balabuc, C.; Filip, L.; Rominu, R.; Bradu, A.; Hughes, M.; Podoleanu, A.G. Quality assessment of dental treatments using en-face optical coherence tomography. J. Biomed. Opt. 2008, 13, 054065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, M.C.; Strasswimmer, J.; Parke, B.H.; Cense, B.; de Boer, J.F. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2004, 9, 287–291. [Google Scholar] [CrossRef]
- Pircher, M.; Goetzinger, E.; Leitgeb, R.; Hitzenberger, C.K. Three dimensional polarization sensitive OCT of human skin In Vivo. Opt. Express 2004, 12, 3236–3244. [Google Scholar] [CrossRef]
- Ugryumova, N.; Attenburrow, D.P.; Winlove, C.P.; Matcher, S.J. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography. J. Phys. D Appl. Phys. 2005, 38, 2612–2619. [Google Scholar] [CrossRef]
- Youn, J.-I.; Vargas, G.; Wong, B.J.F.; Milner, T.E. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping. Phys. Med. Biol. 2005, 50, 1937–1950. [Google Scholar] [CrossRef]
- Xie, T.; Guo, S.; Zhang, J.; Chen, Z.; Peavy, G.M. Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus. J. Biomed. Opt. 2006, 11, 064001. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Xia, Y.; Guo, S.; Hoover, P.; Chen, Z.; Peavy, G.M. Topographical variations in the polarization sensitivity of articular cartilage as determined by polarization-sensitive optical coherence tomography and polarized light microscopy. J. Biomed. Opt. 2008, 13, 054034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Real, E.; Icardo, J.M.; Fernández-Barreras, G.; Revuelta, J.M.; Díez, M.C.; Pontón, A.; Gutiérrez, J.F.; Higuera, J.M.L.; Conde, O.M. Identification of Human Pathological Mitral Chordae Tendineae Using Polarization-sensitive Optical Coherence Tomography. Sensors 2019, 19, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, B. Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications. Appl. Sci. 2017, 7, 474. [Google Scholar] [CrossRef]
- De Boer, J.F.; Hitzenberger, C.K.; Yasuno, Y. Polarization sensitive optical coherence tomography—A review [Invited]. Biomed. Opt. Express 2017, 8, 1838–1873. [Google Scholar] [CrossRef] [Green Version]
- Giattina, S.D.; Courtney, B.K.; Herz, P.R.; Harman, M.; Shortkroff, S.; Stamper, D.L.; Liu, B.; Fujimoto, J.G.; Brezinski, M.E. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int. J. Cardol. 2006, 107, 400–409. [Google Scholar] [CrossRef]
- Nadkarni, S.K.; Bouma, B.E.; de Boer, J.; Tearney, G.J. Evaluation of collagen in atherosclerotic plaques: The use of two coherent laser-based imaging methods. Lasers Med. Sci. 2009, 24, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Niemelä, P.; Suhonen, J. Rugged Fiber-Optic Raman Probe for Process Monitoring Applications. Appl. Spectrosc. 2001, 55, 1337–1340. [Google Scholar] [CrossRef]
- Niemelä, P.; Sumen, J.; Suhonen, J. Dual-laser CCD-Raman spectrometer applied to on-line measurement of paper coating paste. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5826, 406–411. [Google Scholar] [CrossRef]
- Keränen, M.; Maaninen, A.; Gnyba, M.; Maaninen, T. Spectroscopic studies of a ring opening process between epoxy- and aminosilanes and imine formation reactions in aqueous solutions. J. Sol-Gel. Sci. Technol. 2018, 87, 725–733. [Google Scholar] [CrossRef]
- Keshavarz, M.; Rezaul Haque Chowdhury, A.K.M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Neugebauer, U.; Kurz, C.; Bocklitz, T.; Berger, T.; Velten, T.; Clement, J.H.; Krafft, C.; Popp, J. Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip. Micromachines 2014, 5, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, F.; Piguet, D.; Marquet, P.; Gross, J.D.; Tromberg, B.J.; Depeursinge, C. In vivo local determination of tissue optical properties applications to human brain. Appl. Opt. 1999, 38, 4939–4950. [Google Scholar] [CrossRef] [Green Version]
- Pluciński, J.; Frydrychowski, A. Influence of pulse waves on the transmission of near-infrared radiation in outer-head tissue layers. Front. Optoelectron. 2017, 10, 287–291. [Google Scholar] [CrossRef]
- Kaminsky, W.; Claborn, K.; Kahr, B. Polarimetric imaging of crystals. Chem. Soc. Rev. 2004, 33, 514–525. [Google Scholar] [CrossRef]
- Li, Q.; Karnowski, K.; Untracht, G.; Noble, P.B.; Cense, B.; Villiger, M.; Sampson, D.D. Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus. Biomed. Opt. Express 2020, 11, 1122–1138. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T.; Biswal, N.C.; Wang, X.; Sanders, M.; Brewer, M.; Zhu, Q. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue. J. Biomed. Opt. 2011, 16, 090504. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.E.; Jørgensen, T.M. Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems. In Optical Coherence Tomography, 2nd ed.; Drexler, W., Fujimoto, J.G., Eds.; Springer: Cham, Switzerland, 2015; Volume 1, pp. 95–140. [Google Scholar]
- Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Mandair, G.S.; Morris, M.D. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 2015, 4, 620. [Google Scholar] [CrossRef] [Green Version]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. Proc. SPIE Int. Soc. Opt. Eng. 2006, 6163, 616310. [Google Scholar] [CrossRef]
- Weber, J.R.; Baribeau, F.; Grenier, P.; Émond, F.; Dubois, S.; Duchesne, F.; Girard, M.; Pope, T.; Gallant, P.; Mermut, O.; et al. Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery. Biomed. Opt. Express 2014, 5, 16–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strąkowski, M.; Pluciński, J.; Kosmowski, B.B. Polarization sensitive optical coherence tomography with spectroscopic analysis. Acta Phys. Pol. A 2011, 120, 785–788. [Google Scholar] [CrossRef]
- Kraszewski, M.; Strąkowski, M.; Pluciński, J.; Kosmowski, B. Spectral measurement of birefringence using particle swarm optimization analysis. Appl. Opt. 2015, 54, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Beleites, C.; Neugebauer, U.; Abalde-Cela, S.; Afseth, N.K.; Alsamad, F.; Anand, S.; Araujo-Andrade, C.; Aškrabić, S.; Avci, E.; et al. Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Anal. Chem. 2020, 92, 15745–15756. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chaney, E.J.; Aksamitiene, E.; Marjanovic, M.; Boppart, S.A. Compressive sensing for polarization sensitive optical coherence tomography. J. Phys. D Appl. Phys. 2021, 54, 294005. [Google Scholar] [CrossRef]
PS-OCT System | Raman Spectrometer | ||
---|---|---|---|
Item | Value | Item | Value |
Light source type | Diode laser—20 kHz swept source | Light source type | Diode laser—CW mode |
Average output power | 10 mW | Average output power | 100 mW |
Central wavelength | 1320 nm | Central wavelength | 830 nm |
Wavelength range | 140 nm | Raman spectral range | Stokes band—200–2000 cm−1 |
Longitudinal resolution | 12 µm | Spectral resolution | 8 cm−1 |
Lateral resolution | 15 µm | Spectrograph | Axial transmissive setup with a holographic transmission grating |
Frame rate | >4 fps | Detector | thermoelectric-cooled CCD array —1024 columns, −50 °C |
Depth imaging range | 7 mm | Optical system | Fiber-optics probe—a working distance of 5 cm |
Transverse imaging range | 10 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowacki, M.J.; Kamińska, A.M.; Gnyba, M.; Pluciński, J.; Strąkowski, M.R. The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process. Sensors 2021, 21, 6468. https://doi.org/10.3390/s21196468
Głowacki MJ, Kamińska AM, Gnyba M, Pluciński J, Strąkowski MR. The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process. Sensors. 2021; 21(19):6468. https://doi.org/10.3390/s21196468
Chicago/Turabian StyleGłowacki, Maciej J., Aleksandra M. Kamińska, Marcin Gnyba, Jerzy Pluciński, and Marcin R. Strąkowski. 2021. "The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process" Sensors 21, no. 19: 6468. https://doi.org/10.3390/s21196468
APA StyleGłowacki, M. J., Kamińska, A. M., Gnyba, M., Pluciński, J., & Strąkowski, M. R. (2021). The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process. Sensors, 21(19), 6468. https://doi.org/10.3390/s21196468