Calibration of Planar Reflectors Reshaping LiDAR’s Field of View
Abstract
:1. Introduction and Related Work
2. Materials and Methods
2.1. Mechanical Design
2.2. Calibration Method
2.2.1. Data Acquisition
2.2.2. Iterative Closest Point
2.2.3. Line with Plane Intersection
2.2.4. Reflection Observation Equation
2.2.5. Ground-Truth Data Observation Equation
2.2.6. Calibration Algorithm
- the point in tangent space to the manifold is a minimal representation (six degrees of freedom).
- the point in tangent space does not have any constraints and can be always exponentially mapped to a valid .
- every valid member can be mapped back to an exact point in tangent space (logarithmic mapping). It is computed using a closed-form solution (Euler–Rodrigues formula).
- every optimized transformation contributes six parameters to the optimization problem.
- with current calibration point clouds and Kd-trees are built in the global coordinate system.
- using Kd-tree, it searches for pairs of the nearest neighbourhood points that were reflected by a different mirror.
- every found nearest neighborhood point pair creates an observation equation . The point was observed with the measurement (taken in the instrument’s local coordinate system), reflected by the mirror and the laser scanner was at rotation . Mirror is represented by its plane parameters via: . Current rotation of the rotating table is represented with homogenous transformation . Finally, the residual for the point pair is given by Equation (15).
- Every found pair contributes a new residual. The number of those equations creates an optimization problem. The equation is (15) and is differentiated automatically against all optimized parameters, which are:
- The optimization problem is solved using the Levenberg–Marquardt algorithm until convergence using the Ceres solver.
- New, the found parameters are applied correctly according to its parametrization and the whole cycle is repeated.
2.2.7. Calibration Accuracy Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Computer Aided Design |
FDM | Fused Deposition Modeling |
GPS | Global Positioning System |
FOV | Global Positioning System |
ICP | Iterative Closest Point |
LiDAR | Light Detection and Ranging |
MEMS | Micro Electro Mechanical Systems |
PLA | PolyLactic Acid |
PMMA | PolyMethyl MethAcrylate |
SLAM | Simultaneous Localization and Mapping |
ROI | Region of iterest |
References
- Stefano, F.D.; Chiappini, S.; Gorreja, A.; Balestra, M.; Pierdicca, R. Mobile 3D scan LiDAR: A literature review. Geomat. Nat. Hazards Risk 2021, 12, 2387–2429. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Hong, X. Low-cost Retina-like Robotic Lidars Based on Incommensurable Scanning. IEEE/ASME Trans. Mechatron. 2021. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppä, J.; Kukko, A. Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning. Sensors 2013, 13, 8140–8154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtola, V.V.; Nikoohemat, S.; Nüchter, A. Indoor 3D: Overview on Scanning and Reconstruction Methods. In Handbook of Big Geospatial Data; Springer International Publishing: Cham, Switzerland, 2021; pp. 55–97. [Google Scholar]
- Chen, C.Y.; Chien, H.J.; Huang, P.S.; Hong, W.B.; Chen, C.F. Intrinsic Parameters Calibration for Multi-Beam LiDAR Using the Levenberg–Marquardt Algorithm. In Proceedings of the 27th Conference on Image and Vision Computing New Zealand, Dunedin, New Zealand, 26–28 November 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 19–24. [Google Scholar] [CrossRef]
- Bergelt, R.; Khan, O.; Hardt, W. Improving the Intrinsic Calibration of a Velodyne LiDAR Sensor. In Proceedings of the IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017. [Google Scholar] [CrossRef]
- Levinson, J.; Thrun, S. Unsupervised Calibration for Multi-beam Lasers. In Experimental Robotics: The 12th International Symposium on Experimental Robotics; Khatib, O., Kumar, V., Sukhatme, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 179–193. [Google Scholar] [CrossRef]
- Wang, D.; Watkins, C.; Xie, H. MEMS Mirrors for LiDAR: A Review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Zevering, J.; Bredenbeck, A.; Arzberger, F.; Borrmann, D.; Nüchter, A. L.U.N.A.—A Laser-Mapping Unidirectional Navigation Actuator. In Proceedings of the 17th International Symposium of Experimental Robotics (ISER ’21), La Valletta, Malta, 9–12 November 2021; pp. 85–94. [Google Scholar]
- Borrmann, D.; Jörissen, S.; Nüchter, A. RADLER—A RADial LasER scanning device. In Proceedings of the 16th International Symposium of Experimental Robotics (ISER ’18), Buenos Aires, Argentina, 5–8 November 2018; pp. 655–664. [Google Scholar]
- Endres, F.; Sprunk, C.; Kümmerle, R.; Burgard, W. A catadioptric extension for RGB-D cameras. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 466–471. [Google Scholar] [CrossRef]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar] [CrossRef]
- Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Sünderhauf, N.; Protzel, P. Switchable constraints for robust pose graph SLAM. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1879–1884. [Google Scholar] [CrossRef]
- Olson, E.; Agarwal, P. Inference on networks of mixtures for robust robot mapping. Int. J. Robot. Res. 2013, 32, 826–840. [Google Scholar] [CrossRef]
- Agarwal, P.; Tipaldi, G.D.; Spinello, L.; Stachniss, C.; Burgard, W. Robust map optimization using dynamic covariance scaling. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 62–69. [Google Scholar]
- Akay, A.; Akgul, Y.S. 3D reconstruction with mirrors and RGB-D cameras. In Proceedings of the 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; Volume 3, pp. 325–334. [Google Scholar]
- Morell-Gimenez, V.; Saval-Calvo, M.; Azorin-Lopez, J.; Garcia-Rodriguez, J.; Cazorla, M.; Orts-Escolano, S.; Fuster-Guillo, A. A Comparative Study of Registration Methods for RGB-D Video of Static Scenes. Sensors 2014, 14, 8547–8576. [Google Scholar] [CrossRef] [PubMed]
- Aalerud, A.; Dybedal, J.; Subedi, D. Reshaping Field of View and Resolution with Segmented Reflectors: Bridging the Gap between Rotating and Solid-State LiDARs. Sensors 2020, 20, 3388. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Anderson, S.; Barfoot, T.D. Two-axis scanning lidar geometric calibration using intensity imagery and distortion mapping. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3672–3678. [Google Scholar] [CrossRef]
- Abiko, S.; Sakamoto, Y.; Hasegawa, T.; Yuta, S.; Shimaji, N. Development of constant altitude flight system using two dimensional laser range finder with mirrors. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 833–838. [Google Scholar] [CrossRef]
- Chen, M.; Pitzer, B.; Droz, P.y.; Grossman, W. Mirrors to Extend Sensor Field of View in Self-Driving Vehicles. U.S. Patent Application 20200341118, 29 October 2020. [Google Scholar]
- Im, J.H.; Im, S.H.; Jee, G.I. Extended Line Map-Based Precise Vehicle Localization Using 3D LIDAR. Sensors 2018, 18, 3179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.M.; Mutz, F.; et al. Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [Google Scholar] [CrossRef]
- Leonard, J.; Durrant-Whyte, H. Simultaneous map building and localization for an autonomous mobile robot. In Proceedings of the IROS’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems’91, Osaka, Japan, 3–5 November 1991; Volume 3, pp. 1442–1447. [Google Scholar]
- Skrzypczyński, P. Simultaneous localization and mapping: A feature-based probabilistic approach. Int. J. Appl. Math. Comput. Sci. 2009, 19, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Ayush, K.; Agarwal, N.K. Real time visual SLAM using cloud computing. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.H.C. A Novel RGB-D SLAM Algorithm Based on Cloud Robotics. Sensors 2019, 19, 5288. [Google Scholar] [CrossRef] [Green Version]
- Livox-Mid-40. 2021. Available online: https://www.livoxtech.com/mid-40-and-mid-100/specs (accessed on 23 September 2021).
- z-f-imager-5010. 2021. Available online: https://geo-matching.com/terrestrial-laser-scanners/z-f-imager-5010 (accessed on 23 September 2021).
- 360, A.F. Available online: https://www.autodesk.com/products/fusion-360 (accessed on 23 September 2021).
- Pelka, M. Catoprtric Calibration Tool. 2021. Available online: https://github.com/michalpelka/catoptric_livox (accessed on 23 September 2021).
- Agarwal, S.; Mierle, K. Ceres Solver. Available online: http://ceres-solver.org (accessed on 23 September 2021).
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Deng, B. Fast and Robust Iterative Closet Point. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef]
- Segal, A.; Hähnel, D.; Thrun, S. Generalized-ICP. In Robotics: Science and Systems; Trinkle, J., Matsuoka, Y., Castellanos, J.A., Eds.; The MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Solà, J.; Deray, J.; Atchuthan, D. A micro Lie theory for state estimation in robotics. arXiv 2020, arXiv:1812.01537. [Google Scholar]
- Strasdat, H.; Lovegrove, S. C++ implementation of Lie Groups Using Eigen. Available online: https://github.com/strasdat/Sophus (accessed on 23 September 2021).
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. [Google Scholar]
- Ryde, J.; Hu, H. Mobile Robot 3D Perception and Mapping without Odometry Using Multi-Resolution Occupancy Lists. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007; pp. 331–336. [Google Scholar]
- Hu, C.; Huang, Z.; Qin, S.; Wang, X. A new 3D imaging lidar based on the high-speed 2D laser scanner. In Optoelectronic Imaging and Multimedia Technology II; Shimura, T., Xu, G., Tao, L., Zheng, J., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8558, pp. 27–34. [Google Scholar]
- Alismail, H.; Browning, B. Automatic Calibration of Spinning Actuated Lidar Internal Parameters. J. Field Robot. 2015, 32, 723–747. [Google Scholar] [CrossRef]
- Bi, S.; Yuan, C.; Liu, C.; Cheng, J.; Wang, W.; Cai, Y. A Survey of Low-Cost 3D Laser Scanning Technology. Appl. Sci. 2021, 11, 3938. [Google Scholar] [CrossRef]
Parameter | Livox Mid-40 | Z + F IMAGER 5010 |
---|---|---|
Laser Wavelength | 905 nm | 1500 nm |
Laser Safety | Class 1 (IEC60825-1) | Class 1 |
Detection Range | (@ 100 klx) 90 m @ 10% reflectivity | 187.3 m |
130 m @ 20% reflectivity | ||
260 m @ 80% reflectivity | ||
FOV | 38.4 Circular | 320 Vertical, 360 Horizontal |
Range Precision | (1σ @ 20 m) 2 cm (*) | 1 mm |
Plane Number | Accuracy [cm] (Mean Distance to the Plane) | Precision [cm] (Standard Deviation of Distance) | Distance to Sensor [m] |
---|---|---|---|
1 | 2.95 | 1.16 | 18.3 |
2 | 0.32 | 2.01 | 20.2 |
3 | 0.22 | 1.26 | 15.5 |
4 | 2.07 | 2.73 | 35.7 |
5 | 3.26 | 3.05 | 60.3 |
6 | 2.01 | 1.20 | 24.5 |
Parameter | Initial | Calibrated |
---|---|---|
[0.793 u, −0.304 u, −0.527 u, −0.075 m] | [0.799 u, −0.311 u, −0.519 u, −0.044 m] | |
[−0.793 u, 0.609 u, −0.000 u, 0.075 m] | [−0.787u,0.614u, −0.012u,0.049m] | |
[0.793 u, −0.304 u, 0.527 u, −0.075 m] | [0.791 u, −0.301 u, 0.531 u, −0.049 m] | |
[0.793 u, 0.304 u, 0.527 u, −0.075 m] | [0.789 u, 0.311 u, 0.528 u, −0.049 m] | |
[−0.793 u, −0.609 u, −0.000 u, 0.075 m] | [−0.798 u, −0.605 u, 0.008 u, 0.045 m] | |
[0.793 u, 0.304 u, −0.527u, −0.075 m] | [0.793 u, 0.291 u, −0.534 u, −0.047 m] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pełka, M.; Będkowski, J. Calibration of Planar Reflectors Reshaping LiDAR’s Field of View. Sensors 2021, 21, 6501. https://doi.org/10.3390/s21196501
Pełka M, Będkowski J. Calibration of Planar Reflectors Reshaping LiDAR’s Field of View. Sensors. 2021; 21(19):6501. https://doi.org/10.3390/s21196501
Chicago/Turabian StylePełka, Michał, and Janusz Będkowski. 2021. "Calibration of Planar Reflectors Reshaping LiDAR’s Field of View" Sensors 21, no. 19: 6501. https://doi.org/10.3390/s21196501
APA StylePełka, M., & Będkowski, J. (2021). Calibration of Planar Reflectors Reshaping LiDAR’s Field of View. Sensors, 21(19), 6501. https://doi.org/10.3390/s21196501