Fiber Optic Sensors Based on the Faraday Effect
Abstract
:1. Introduction
- -
- Wider frequency bandwidth;
- -
- Immunity to electromagnetic interferences;
- -
- Absence of saturation effects;
- -
- Possibility of dielectric measuring head with no power supply on high-voltage side;
- -
- Possibility of wavelength division multiplexing (WDM);
- -
- Isolation of sensor electronics from the measuring head by optical fiber (OF);
- -
- Smaller size and weight.
2. The Faraday Effect
- The Verdet constant is highest in the vicinity of the absorption line (). Therefore, magneto-optical quality is introduced as a ratio of the Verdet constant and absorption, [58,59]. This parameter expresses material usability as a sensor for the Faraday effect. Since it is wavelength-dependent, for sensing purposes a light source should be chosen with a wavelength where the magneto-optical quality has its maximal value [60,61,62];
- Diamagnetic FR is symmetrical around a resonant frequency and the paramagnetic FR is antisymmetric.
3. Faraday Effect Magnetometry and Electrical Current Sensing
4. Normalization
5. Temperature Compensation
- Change of the Verdet constant of an FM with temperature, ;
- Change of optical path length through an FM, ;
- Change of wavelength of optical source with temperature, ;
- Change of optical quiescent point with temperature, , if an FM possess OA;
- Change of properties of optical components with temperature (for example, quarter-wave plate);
- Temperature gradients in OFs.
- Introduction of controllable DC magnetic field in part of the optical path and using this field for setting the optical quiescent point [135]. Temperature change will shift the optical quiescent point and that will be detected through the DC part of the signal. Feedback will then set up a new appropriate quiescent point, the one that cancels out the Verdet constant temperature change. This method cannot be used for DC magnetic field measurement, and the DC magnetic field actually represents a source of error in this method, as in all AC/DC methods.
- Temperature-sensitive rotation of measurement head by a bimetal coil is used to compensate for the increase in the Verdet constant by a decrease in the component of the optical path parallel to the field [136]. The field direction has to be known. The introduction of bimetal coil cancels out the best part of FOS advantages.
- Introduction of temperature-dependent linear retarder into the optical path. The temperature of the sensor head is obtained through the measurement of the retardance of the birefringent plate [137]. With the temperature dependence of the Verdet constant known, an exact value can be used for measured temperature. Similar solutions place temperature-dependent bulk [138,139] or OF [140] retarder into the optical path and compensates by changing the input polarization of light without calculating the temperature.
- Growth of crystals with high FR independent of T. Appropriate dopants during the crystal growth of iron garnets can match the temperature dependencies of the Verdet constant and the material saturation magnetization, thereby providing an almost flat temperature response [143]. The composition of temperature-independent FR iron garnet differs from the composition for maximal Verdet constant. Compounding two kinds of rare-earth ions with opposite temperature coefficients is another proposed method [144]. For every manganese content, x, in Cd1−xMnxTe (CMT), a crystal light wavelength can be found at which FR is temperature independent [145].
- Modified AC/DC normalization is proposed for intrinsic FOSs [146], but there are no obstacles for implementation of this method with birefringent bulk FM as well. It is shown that the DC part of the signal is only sensitive to birefringence of the coiled OF and the AC part is beside birefringence, current-sensitive. After splitting the signal in frequency domain, the DC part, which is temperature-dependent through birefringence, is used to compensate the temperature dependence of the AC part by modified normalization: .
- Interferometric method that simultaneously measures temperature and FR based on a two-beam interferometric configuration in which the temperature is recovered from the phase change of the interferometric fringes and FR from changes in visibility of the interferometric fringes [147]. This method can be applied with any FM but demands high-quality optical components. Great for laboratory work but not very suitable for practical implementation on the field.
- Using two wavelengths with the same FM, where the Verdet constant has different temperature dependences [148,149]. From the pair of data, both temperature and magnetic field can be calculated. The reported result is quite impressive. In the temperature range from −20 to 100 °C the change in sensor output has been reduced from 18%, uncompensated, to 0.7%, with compensation [148]. This method does not impose restrictions on the frequency bandwidth or type of FM. There is no fundamental obstacle for utilizing it with intrinsic FOS but with intrinsic interferometric solution more care should be paid to the temperature dependence of quarter-wave plate [44].
- Using OA temperature dependence to measure the temperature and calibrated temperature dependence of the Verdet constant to obtain a temperature-independent result [24]. FR is measured by two optical channels in a reflective configuration, applying normalization with OA canceled out. In this way, a position for the third, transmissive channel is opened, and can be used for OA measurement as depicted in Figure 4.
6. Choice of the Faraday Material
7. Discussion
- Magnetic ring concentrator with measurement head for magnetic field measurement placed into the air gap;
- Reciprocal reflection Sagnac interferometer with closed-loop heterodyne detection.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Linear State of Polarization Rotation Angle for Isotropic, Dielectric Material
Appendix B. Transfer Function for Reciprocal Reflection Interferometer with Heterodyne Detection
References
- Hällström, J. Non-Conventional Voltage and Current Sensors for Future Power Grids; Project Details—EURAMET; Chalmers: Gothenburg, Sweden, 2017. [Google Scholar]
- Silva, R.M.; Martins, H.; Nascimento, I.; Baptista, J.M.; Ribeiro, A.L.; Santos, J.L.; Jorge, P.; Frazão, O. Optical Current Sensors for High Power Systems: A Review. Appl. Sci. 2012, 2, 602–628. [Google Scholar] [CrossRef]
- Chai, Q.; Luo, Y.; Ren, J.; Zhang, J.; Yang, J.; Yuan, L.; Peng, G. Review on fiber-optic sensing in health monitoring of power grids. Opt. Eng. 2019, 58, 072007. [Google Scholar] [CrossRef] [Green Version]
- Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Mégret, P.; Wuilpart, M. Faraday effect based optical fiber current sensor for tokamaks. In Proceedings of the ANIMMA 2011—2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, Ghent, Belgium, 6–9 June 2011. [Google Scholar]
- N’cho, J.S.; Fofana, I. Review of Fiber Optic Diagnostic Techniques for Power Transformers. Energies 2020, 13, 1789. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xu, Q.; Wang, K. Research and application of generator protection based on fiber optical current transformer. IEEE Access 2020, 8, 172405–172411. [Google Scholar] [CrossRef]
- Wang, R.; Xu, S.; Li, W.; Wang, X. Optical fiber current sensor research: Review and outlook. Opt. Quantum Electron. 2016, 48, 1–22. [Google Scholar] [CrossRef]
- Peng, J.; Jia, S.; Bian, J.; Zhang, S.; Liu, J.; Zhou, X. Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors. Sensors 2019, 19, 2860. [Google Scholar] [CrossRef] [Green Version]
- Faraday, M.; Faraday, M.; Collin, W. On the Magnetization of Light and the Illumination of Magnetic Lines of Force; The Royal Society: London, UK, 2020. [Google Scholar]
- Spencer, J.B. On the Varieties of Nineteenth-Century Magneto-Optical Discovery. Isis 1970, 61, 34–51. [Google Scholar] [CrossRef]
- Ingersoll, L. The Faraday Effect in Gases and Vapors III. J. Opt. Soc. Am. 1958, 48, 339–343. [Google Scholar] [CrossRef]
- Ingersoll, L.R.; Liebenberg, D.H. The Faraday Effect in Gases and Vapors I. J. Opt. Soc. Am. 1954, 44, 566. [Google Scholar] [CrossRef]
- Ingersoll, L.R.; Liebenberg, D.H. The Faraday Effect in Gases and Vapors II. J. Opt. Soc. Am. 1954, 46, 566. [Google Scholar] [CrossRef]
- Porter, W.S.; Bock, E.M. Faraday Effect in a Plasma. Am. J. Phys. 1965, 33, 1070–1073. [Google Scholar] [CrossRef]
- Yoshino, T. Theory for the Faraday effect in optical fiber. J. Opt. Soc. Am. B 2005, 22, 1856. [Google Scholar] [CrossRef]
- Ballato, J.; Snitzer, E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Appl. Opt. 1995, 34, 6848. [Google Scholar] [CrossRef]
- Shiyu, Y.; Lousteau, J.; Olivero, M.; Merlo, M.; Boetti, N.; Abrate, S.; Chen, Q.Q.; Chen, Q.Q.; Milanese, D. Analysis of Faraday effect in multimode tellurite glass optical fiber for magneto-optical sensing and monitoring applications. Appl. Opt. 2012, 51, 4542–4546. [Google Scholar] [CrossRef] [Green Version]
- Cruz, J.L.; Andres, M.V.; Hernandez, M.A. Faraday effect in standard optical fibers: Dispersion of the effective Verdet constant. Appl. Opt. 1996, 35, 922. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M. Polarization and magnetooptic properties of single-mode optical fiber. Appl. Opt. 1978, 17, 52. [Google Scholar] [CrossRef]
- Kahl, S.; Grishin, A.M. Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 2004, 84, 1438–1440. [Google Scholar] [CrossRef]
- Koerdt, C.; Rikken, G.L.J.A.; Petrov, E.P. Faraday effect of photonic crystals. Appl. Phys. Lett. 2003, 82, 1538–1540. [Google Scholar] [CrossRef]
- Martinez, L.; Cecelja, F.; Rakowski, R. A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A Phys. 2005, 123–124, 438–443. [Google Scholar] [CrossRef]
- Amirsolaimani, B.; Gangopadhyay, P.; Persoons, A.P.; Showghi, S.A.; LaComb, L.J.; Norwood, R.A.; Peyghambarian, N. High sensitivity magnetometer using nanocomposite polymers with large magneto-optic response. Opt. Lett. 2018, 43, 4615. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, P.M.; Petricevic, S.J.; Radunovic, J.B. Compensation for temperature-dependence of the faraday effect by optical activity temperature shift. IEEE Sens. J. 2013, 13, 832–837. [Google Scholar] [CrossRef]
- Mason, S.F. Optical rotatory power. Q. Rev. Chem. Soc. 1963, 17, 20–66. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media: Volume 8 (Course of Theoretical Physics S); Pergamon: Oxford, UK, 1984; ISBN 9781483293752. [Google Scholar]
- Pershan, P.S. Magneto-Optical Effects. J. Appl. Phys. 1967, 38, 1482. [Google Scholar] [CrossRef]
- Ramachandran, G.N.; Ramaseshan, S. Magneto-Optic Rotation in Birefringent Media—Application of the Poincaré Sphere. J. Opt. Soc. Am. 1952, 42, 49. [Google Scholar] [CrossRef]
- Tabor, W.J.; Chen, F.S. Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: Experiments with ytterbium orthoferrite. J. Appl. Phys. 1969, 40, 2760–2765. [Google Scholar] [CrossRef]
- Huard, S. Polarization of Light; Wiley: Hoboken, NJ, USA, 1997; ISBN 0471965367. [Google Scholar]
- Li, Y.S.; Liu, J.; Cao, L.X.; Liu, Q.Z. Distributed parametric modeling and simulation of light polarization states using magneto-optical sensing based on the Faraday effect. Sci. China Technol. Sci. 2016, 59, 1899–1910. [Google Scholar] [CrossRef]
- Forman, P.R.; Jahoda, F.C. Linear birefringence effects on fiber-optic current sensors. Appl. Opt. 1988, 27, 3088. [Google Scholar] [CrossRef] [PubMed]
- López-Higuera, J.M. Handbook of Optical Fibre Sensing Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Jaecklin, A.A.; Lietz, M. Elimination of Disturbing Birefringence Effects on Faraday Rotation. Appl. Opt. 1972, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Kong, M.G.; Jones, G.R.; Spencer, J.W. Sensitivity improvement of an optical current sensor with enhanced Faraday rotation. J. Light. Technol. 1997, 15, 2246–2252. [Google Scholar] [CrossRef]
- Stone, J. Stress-Optic Effects, Birefringence, and Reduction of Birefringence by Annealing in Fiber Fabry-Perot Interferometers. J. Light. Technol. 1988, 6, 1245–1248. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, X. Simulation of Linear Birefringence Reduction in Fiber-Optical Current Sensor. IEEE Photonics Technol. Lett. 2007, 19, 1568–1570. [Google Scholar] [CrossRef]
- Samimi, M.H.; Akmal, A.A.S.; Mohseni, H. Optical Current Transducers and Error Sources in Them: A Review. IEEE Sens. J. 2015, 15, 4721–4728. [Google Scholar] [CrossRef]
- Ulmer, E.A. A high-accuracy optical current transducer for electric power systems. IEEE Trans. Power Deliv. 1990, 5, 892–898. [Google Scholar] [CrossRef]
- Perciante, C.D.; Ferrari, J.A. Cancellation of bending-induced birefringence in single-mode fibers: Application to Faraday sensors. Appl. Opt. 2006, 45, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Paufler, P.; Nye, J.F. Physical Properties of Crystals; Clarendon Press: Oxford, UK, 1986; ISBN 0-19-851165-5. [Google Scholar]
- Li, C.; Yoshino, T. Simultaneous measurement of current and voltage by use of one bismuth germanate crystal. Appl. Opt. 2002, 41, 5391. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Whitaker, J.F. Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal. Appl. Phys. Lett. 2008, 92, 101119. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; He, Z. Birefringence Variation Independent Fiber-Optic Current Sensor Using Real-Time SOP Measurement. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Feldman, A.; Brower, W.S.; Horowitz, D. Optical activity and faraday rotation in bismuth oxide compounds. Appl. Phys. Lett. 1970, 16, 201–202. [Google Scholar] [CrossRef]
- Mihailovic, P.; Petricevic, S.; Stankovic, S.; Radunovic, J. Temperature dependence of the Bi12GeO20 optical activity. Opt. Mater. 2008, 30, 1079–1082. [Google Scholar] [CrossRef]
- Budden, K.G. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere; Cambridge University Press: Cambridge, UK, 1985; ISBN 9780521254618. [Google Scholar]
- Naselli, E.; Mascali, D.; Torrisi, G.; Castro, G.; Celona, L.; Gammino, S.; Mazzaglia, M.; Sorbello, G. The first measurement of plasma density by means of an interfero-polarimetric setup in a compact ECR-plasma trap. J. Instrum. 2018, 13, C12020. [Google Scholar] [CrossRef]
- Becquerel, H. Sur une interprétation appligarle au phénomène de Faraday et au phénomène de Zeeman. J. Phys. Théorique Appliquée 1897, 6, 681–688. [Google Scholar] [CrossRef]
- Born, M.; Jordan, P. Elementare Quantenmechanik: Zweiter Band der Vorlesungen über Atommechanik, German ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 1930; ISBN 978-3-662-00291-9. [Google Scholar]
- Bennett, H.S.; Stern, E.A. Faraday effect in solids. Phys. Rev. 1965, 137, A448. [Google Scholar] [CrossRef]
- Shen, Y.R. Faraday rotation of rare-earth ions. I. Theory. Phys. Rev. 1964, 133, A511. [Google Scholar] [CrossRef]
- Cornean, H.D.; Nenciu, G. The Faraday effect revisited: Thermodynamic limit. J. Funct. Anal. 2008, 257, 2024–2066. [Google Scholar] [CrossRef]
- Cornean, H.D.; Nenciu, G.; Pedersen, T.G. The Faraday effect revisited: General theory. J. Math. Phys. 2005, 47, 013511. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.C.; Chao, H.Y.; Lin, K.H. A study of the generalized Faraday effect in several media. Radio Sci. 1999, 34, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Boswarva, I.M.; Howard, R.E.; Lidiard, A.B. Faraday effect in semiconductors. In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences; The Royal Society: London, UK, 1962; Volume 269, pp. 125–141. [Google Scholar]
- Wangsness, R.K. Susceptibility tensor and the faraday effect in ferrimagnetics. Phys. Rev. 1954, 95, 339–345. [Google Scholar] [CrossRef]
- Kapitulnik, A.; Dodge, J.S.; Fejer, M.M. High-resolution magneto-optic measurements with a Sagnac interferometer (invited). J. Appl. Phys. 1994, 75, 6872–6877. [Google Scholar] [CrossRef] [Green Version]
- Ferrand, B.; Armand, M.F.; Moriceau, H.; Daval, J.; Gay, J.C. Growth of high figure of merit magnetic garnet films for magneto-optical applications. Mater. Res. Bull. 1986, 21, 633–638. [Google Scholar] [CrossRef]
- Barybin, S.N.; Grigorenko, A.N.; Konov, V.I.; Nikitin, P.I. Magnetic field fibre-optical sensors based on Faraday effect. Sensors Actuators A Phys. 1991, 27, 767–774. [Google Scholar] [CrossRef]
- Petrovskii, G.T.; Edelman, I.S.; Zarubina, T.V.; Malakhovskii, A.V.; Zabluda, V.N.; Ivanov, M.Y. Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region. J. Non. Cryst. Solids 1991, 130, 35–40. [Google Scholar] [CrossRef]
- Tsushima, K.; Koshizuka, N. Research acivities on magnei’o-optical devices in japan. IEEE Trans. Magn. 1987, 23, 3473–3478. [Google Scholar] [CrossRef]
- Barnes, N.P.; Petway, L.B. Variation of the Verdet constant with temperature of terbium gallium garnet. J. Opt. Soc. Am. B 1992, 9, 1912. [Google Scholar] [CrossRef]
- Cruden, A.; Michie, C.; Madden, I.; Niewczas, P.; McDonald, J.R.; Andonovic, I. Optical current measurement system for high-voltage applications. Meas. J. Int. Meas. Confed. 1998, 24, 97–102. [Google Scholar] [CrossRef]
- Bloembergen, N.; Pershan, P.S.; Wilcox, L.R. Microwave modulation of light in paramagnetic crystals. Phys. Rev. 1960, 120, 2014–2023. [Google Scholar] [CrossRef]
- Van Der Ziel, J.P.; Pershan, P.S.; Malmstrom, L.D. Optically-induced magnetization resulting from the inverse faraday effect. Phys. Rev. Lett. 1965, 15, 190–193. [Google Scholar] [CrossRef]
- Jain, A. Magneto Optic Current Transformer Technology (MOCT). IOSR J. Electr. Electron. Eng. 2017, 12, 46–50. [Google Scholar] [CrossRef]
- Ortiz, V.H.; Flores, J.L.; García-Torales, G. A review on optical current transducers for power system metering. In Fiber Optic Sensors and Applications V; SPIE: Bellingham, WA, USA, 2007; Volume 6770, p. 677018. [Google Scholar]
- McLaren, P.G.; Thomson, D.J.; Middleton, R.L. A Prototype Clamp-on Magneto-optical Current Transducer for Power System Metering and Relaying. IEEE Trans. Power Deliv. 1995, 10, 1764–1770. [Google Scholar] [CrossRef]
- Li, H.Y.; Crossley, P.A.; Aggarwal, R.K. Application of fibre optical current transducer to protection. In Proceedings of the IEE Conference Publication, Nottingham, UK, 25–27 March 1997; IEE: London, UK, 1997; pp. 274–277. [Google Scholar]
- Mitsui, T.; Hosoe, K.; Usami, H.; Miyamoto, S. Development of Fiber-Optic Voltage Sensors and Magnetic-Field Sensors. IEEE Trans. Power Deliv. 1987, PWRD-2, 87–93. [Google Scholar] [CrossRef]
- Chu, B.C.; Ning, Y.N.; Jackson, D.A. Triangular-shaped bulk optic glass Faraday current sensor. In Fiber Optic and Laser Sensors X; SPIE: Bellingham, WA, USA, 1993; Volume 1795, pp. 173–182. [Google Scholar]
- Yoshino, T.; Gojyuki, M.; Takahashi, Y.; Shimoyama, T. Single glass block faraday effect current sensor with homogeneous isotropic closed optical circuit. Appl. Opt. 1997, 36, 5566. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.T.; Takahashi, Y.; Gojyuki, M.; Shimoyama, T. Polygonal Faraday effect current sensor with polarization-preserving dielectric mirrors. In Fiber Optic and Laser Sensors XII; SPIE: Bellingham, WA, USA, 1994; Volume 2292, pp. 34–41. [Google Scholar]
- Petersen, A.E. Portable Optical AC and Proposed DC Current Sensor For High Voltage Applications. IEEE Trans. Power Deliv. 1995, 10, 595–599. [Google Scholar] [CrossRef]
- Mihailovic, P.; Petricevic, S.; Stojkovic, Z.; Radunovic, J.B. Development of a portable fiber-optic current sensor for power systems monitoring. IEEE Trans. Instrum. Meas. 2004, 53, 24–30. [Google Scholar] [CrossRef]
- Esmail, E.M.; Elkalashy, N.I.; Kawady, T.; Taalab, A.M.I. Experimental implementation of optical current transducers. In Proceedings of the 2016 18th International Middle-East Power Systems Conference, MEPCON 2016-Proceedings, Cairo, Egypt, 27–29 December 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 276–281. [Google Scholar]
- Ning, Y.N.; Chu, B.C.B.; Jackson, D.A. Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring. Opt. Lett. 1991, 16, 1996. [Google Scholar] [CrossRef]
- Ning, Y.N.; Jackson, D.A. Review of optical current sensors using bulk-glass sensing elements. Sens. Actuators A Phys. 1993, 39, 219–224. [Google Scholar] [CrossRef]
- Wang, Z.P.; Sun, W.M.; Huang, Z.J.; Kang, C.; Ruan, S.L.; Luo, Y.H. Effects of reflection-induced retardance on the EMI immunity of bulk optic-material current sensors. Guangdianzi Jiguang/J. Optoelectron. Laser 1998, 9, 266–268. [Google Scholar] [CrossRef]
- Yoshino, T.; Takahashi, Y.; Gojyuki, M. Imperfection errors in glass block Faraday effect current sensor. Opt. Rev. 1997, 4, 108–110. [Google Scholar] [CrossRef]
- Ning, Y.N.; Jackson, D.A. Faraday effect optical current clamp using a bulk-glass sensing element. Opt. Lett. 1993, 18, 835. [Google Scholar] [CrossRef] [PubMed]
- Arce-Diego, J.L.; López-Ruisánchez, R.; López-Higuera, J.M.; Muriel, M.A. Model of an openable Faraday-effect hybrid-current optical transducer based on a square-shaped structure with internal mirror. Appl. Opt. 1997, 36, 6242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, Y.N.; Wang, Z.P.; Palmer, A.W.; Grattan, K.T.V.; Jackson, D.A. Recent progress in optical current sensing techniques. Rev. Sci. Instrum. 1995, 66, 3097–3111. [Google Scholar] [CrossRef]
- Papp, A.; Harms, H. Magnetooptical current transformer 1: Principles. Appl. Opt. 1980, 19, 3729. [Google Scholar] [CrossRef]
- Ferdinand, P.; Lesne, J.L. Induced Circular Birefringence and Ellipticity Measurement in a Faraday Effect Fiber Ring Interferometer. In Fiber-Optic Rotation Sensors and Related Technologies; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1982; Volume 32, pp. 215–221. [Google Scholar]
- Xu, J.; Rogers, A.J. Optical-fibre birefringence measurement for current sensing. In Optical Fiber Sensors (1996); The Optical Society: Washington, DC, USA, 2015; p. We22. [Google Scholar]
- Ren, Z.B.; Robert, P.; Paratte, P.-A. Temperature dependence of bend- and twist-induced birefringence in a low-birefringence fiber. Opt. Lett. 1988, 13, 62. [Google Scholar] [CrossRef]
- Chen, M.-H.; Chiang, K.-H.; Wu, Y.-D.; Lin, W.-W.; Wu, T.-W. A novel electric current sensor employing twisted optical fibers. In Advanced Sensor Systems and Applications II; SPIE: Bellingham, WA, USA, 2005; Volume 5634, p. 286. [Google Scholar]
- Rashleigh, S.C.; Ulrich, R. Magneto-optic current sensing with birefringent fibers. Appl. Phys. Lett. 1979, 34, 768–770. [Google Scholar] [CrossRef]
- Tang, D.; Rose, A.H.; Day, G.W.; Etzel, S.M. Annealing of Linear Birefringence in Single-Mode Fiber Coils: Application to Optical Fiber Current Sensors. J. Light. Technol. 1991, 9, 1031–1037. [Google Scholar] [CrossRef]
- Rose, A.H.; Ren, Z.; Day, G.W. Improved annealing technique for optical fiber. In Proceedings of the Tenth International Conference on Optical Fibre Sensors, Glasgow, Scotland, 11–13 October 1994; SPIE: Bellingham, WA, USA, 1994; Volume 2360, p. 306. [Google Scholar]
- Rose, A.H.; Etzel, S.M.; Wang, C.M. Verdet constant dispersion in annealed optical fiber current sensors. J. Light. Technol. 1997, 15, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.H.; Ren, Z.B.; Day, G.W. Twisting and annealing optical fiber for current sensors. J. Light. Technol. 1996, 14, 2492–2498. [Google Scholar] [CrossRef]
- Ren, Z.B.; Robert, P. Polarization multiplexing applied to a fiber current sensor. Opt. Lett. 1989, 14, 1228. [Google Scholar] [CrossRef]
- Petričević, S.; Stojković, Z.; Mihailović, P.; Radunovid, J. Development of a Fibre Optic Impulse Current Sensor for high voltage equipment tests. Int. J. Electr. Eng. Educ. 2008, 45, 1–16. [Google Scholar] [CrossRef]
- Lewis, K.G.; Jones, R.E.; Jones, G.R. Tap-changer monitoring system incorporating optical sensors. In Proceedings of the Second International Conference on the Reliability of Transmission and Distribution Equipment, Warwick, UK, 29–31 March 1995; IEE: London, UK, 1995; pp. 97–102. [Google Scholar]
- Nicati, P.A.; Robert, P. Stabilised current sensor using Sagnac interferometer. J. Phys. E 1988, 21, 791–796. [Google Scholar] [CrossRef]
- Blake, J.N. All-fiber in-line Sagnac interferometer current sensor. In Proceedings of the Optical Engineering Midwest ‘95, 1995, Chicago, IL, USA, 18–19 May 1995; SPIE: Bellingham, WA, USA, 1995; Volume 2622, pp. 315–319. [Google Scholar]
- Hotate, K.; Thai, B.T.; Saida, T. Comparison between flint glass fiber and twisted/bent single-mode fiber as a Faraday element in an interferometric fiber optic current sensor. In European Workshop on Optical Fibre Sensors; SPIE: Bellingham, WA, USA, 1998; Volume 3483, pp. 233–237. [Google Scholar]
- Li, X.; Liu, P.; Guang, X.; Xu, Z.; Guan, L.; Li, G. Temperature dependence of faraday effect-induced bias error in a fiber optic gyroscope. Sensors 2017, 17, 2046. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.; Tantaswadi, P.; De Carvalho, R.T. In-line sagnac interferometer current sensor. IEEE Trans. Power Deliv. 1996, 11, 116–121. [Google Scholar] [CrossRef]
- Frosio, G.; Dändliker, R. Reciprocal reflection interferometer for a fiber-optic Faraday current sensor. Appl. Opt. 1994, 33, 6111. [Google Scholar] [CrossRef]
- Ferdous, F.; Rose, A.H.; Perkins, P. Passively biased inline Sagnac interferometer-optical current sensor: Theoretical review. Opt. Eng. 2021, 60, 057102. [Google Scholar] [CrossRef]
- Frank, A.; Hsu, C.-P.; Müller, G.M.; Bohnert, K.; Yang, L.; Gabus, P. Fiber-Optic Current Sensor Tolerant to Imperfections of Polarization-Maintaining Fiber Connectors. J. Light. Technol. 2018, 36, 2161–2165. [Google Scholar]
- Veeser, L.R.; Day, G.W. Faraday Effect Current Sensing Using a Sagnac Interferometer with a 3×3 Coupler. In Proceedings of the 7th Optical Fibre Sensors Conference, Sydney, Australia, 2–6 December 1990; pp. 325–328. [Google Scholar]
- Rochford, K.B.; Day, G.W. Polarization Dependence of Response Functions in 3x3 Sagnac Optical Fiber Current Sensors. In Proceedings of the Intl. Optical Fiber Sensors Conf., Firenze, Italy, 4–6 May 1993; pp. 1504–1509. [Google Scholar]
- Kim, S.-M.; Chu, W.-S.; Kim, S.-G.; Oh, M.-C. Integrated-optic current sensors with a multimode interference waveguide device. Opt. Express 2016, 24, 7426. [Google Scholar] [CrossRef]
- Kim, S.-M.; Park, T.-H.; Huang, G.; Oh, M.-C. Bias-free optical current sensors based on quadrature interferometric integrated optics. Opt. Express 2018, 26, 31599. [Google Scholar] [CrossRef]
- Kersey, A.D.; Jackson, D.A. Current Sensing Utilizing Heterodyne Detection of the Faraday Effect in Single-Mode Optical Fiber. J. Light. Technol. 1986, 4, 640–644. [Google Scholar] [CrossRef]
- Bartlett, S.C.; Farahi, F.; Jackson, D.A. Common-path optical fiber heterodyne interferometric current sensor. In Fiber-Optic Metrology and Standards; SPIE: Bellingham, WA, USA, 1991; Volume 1504, pp. 247–250. [Google Scholar]
- Bartlett, S.C.; Farahi, F.; Jackson, D.A. Current sensing using Faraday rotation and a common path optical fiber heterodyne interferometer. Rev. Sci. Instrum. 1990, 61, 2433–2435. [Google Scholar] [CrossRef]
- Bohnert, K.M.; Braendle, H.; Frosio, G. Field test of interferometric optical fiber high-voltage and current sensors. In Proceedings of the Tenth International Conference on Optical Fibre Sensors, Glasgow, Scotland, 11–13 October 1994; SPIE: Bellingham, WA, USA, 1994; Volume 2360, p. 16. [Google Scholar]
- Tatam, R.P.; Jackson, D.A. Remote probe configuration for Faraday effect magnetometry. Opt. Commun. 1989, 72, 60–65. [Google Scholar] [CrossRef]
- Zhang, X. The Study of the Polarization Errors of All Fiber Optical Current Transformers. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Hubei, China, 19–20 April 2019; Institute of Physics Publishing: Bristol, UK, 2019; Volume 562. [Google Scholar]
- Temkina, V.; Medvedev, A.; Mayzel, A. Research on the methods and algorithms improving the measurements precision and market competitive advantages of fiber optic current sensors. Sensors 2020, 20, 5995. [Google Scholar] [CrossRef]
- Temkina, V.S.; Mayzel, A.V. Study of the stability of the fiber-optic current sensor. In Proceedings of the Journal of Physics: Conference Series, St. Petersburg, Russia, 11–12 July 2019; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1326, p. 012032. [Google Scholar]
- García, R.; Blanco, E.; Domínguez, M. Development of a magneto-optical sensor prototype to measure current by means of the induced magnetic field. Sensors Actuators A Phys. 2016, 249, 231–241. [Google Scholar] [CrossRef]
- Tan, Q.; Xu, Q.; Xie, N.; Li, C. An Optical Current Sensor Based on Radial Grating-Polarizer Detection. IEEE Sens. J. 2016, 16, 5927–5933. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, N.; Wang, D.; Huang, Y. A Linear Optical Current Transducer Based on Newton’s Ring Sub-Wavelength Grating. IEEE Sens. J. 2018, 18, 7041–7046. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Q.; Chen, X.; Huang, Y. A Linear Optical Current Transducer Based on Crystal Wedge Imaging Detection. IEEE Sens. J. 2017, 17, 7894–7900. [Google Scholar] [CrossRef]
- Hunte, C. A modulation technique for the measurement of the DC longitudinal Faraday effect. Eur. J. Phys. 2018, 39, 025301. [Google Scholar] [CrossRef]
- Jones, G.R.; Li, G.; Spencer, J.W.; Aspey, R.A.; Kong, M.G. Faraday current sensing employing chromatic modulation. Opt. Commun. 1998, 145, 203–212. [Google Scholar] [CrossRef]
- Mihailovic, P.; Petricevic, S.; Radunovic, J. Improvements in difference-over-sum normalization method for Faraday effect magnetic field waveforms measurement. J. Instrum. 2006, 1, P12002. [Google Scholar] [CrossRef]
- Grosz, A.; Haji-Sheikh, M.J.; Mukhopadhyay, S.C. (Eds.) High Sensitivity Magnetometers; Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-34068-5. [Google Scholar]
- Willsch, M. Extension of the measuring range of magneto optic current sensors using two wavelengths evaluation. In Proceedings of the 13th International Conference on Optical Fiber Sensors, Kyongju, Korea, 12–16 April 1999; SPIE: Bellingham, WA, USA, 1999; Volume 3746, p. 85. [Google Scholar]
- Petricevic, S.J.; Mihailovic, P.M.; Radunovic, J.B. Performance analysis of the Faraday magnetic field point scanner. Sens. Rev. 2013, 33, 80–85. [Google Scholar] [CrossRef]
- Bohnert, K.; Frank, A.; Yang, L.; Gu, X.; Muller, G.M. Polarimetric Fiber-Optic Current Sensor with Integrated-Optic Polarization Splitter. J. Light. Technol. 2019, 37, 3672–3678. [Google Scholar] [CrossRef]
- Niewczas, P.; McDonald, J.R. Advanced optical sensors for power and energy systems applications. IEEE Instrum. Meas. Mag. 2007, 10, 18–28. [Google Scholar] [CrossRef]
- Van den Tempel, C.M.M. Model of a new temperature-compensated optical current sensor using Bi12SiO20. Appl. Opt. 1993, 32, 4869. [Google Scholar] [CrossRef]
- Müller, G.M.; Quan, W.; Lenner, M.; Yang, L.; Frank, A.; Bohnert, K. Fiber-optic current sensor with self-compensation of source wavelength changes. Opt. Lett. 2016, 41, 2867. [Google Scholar] [CrossRef]
- Weber, M.J. Handbook of Optical Materials; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Petricevic, S.J.; Mihailovic, P.M. Compensation of verdet constant temperature dependence by crystal core temperature measurement. Sensors 2016, 16, 1627. [Google Scholar] [CrossRef] [Green Version]
- Willsch, M.; Richter, M.; Kaiser, J.; Bosselmann, T.; Judendorfer, T. Compensation methods of the temperature dependence of glass ring type optical current sensors. In Proceedings of the Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 1–4 October 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11199, p. 13. [Google Scholar]
- Vaerewyck, E.G.; Chen, C.-L.; Asars, J.A. Faraday Current Sensor with Fiber Optic Compensated by Temperature, Degradation, and Linearity. U.S. Patent No. 4,613,811, 23 September 1986. [Google Scholar]
- Chen, C.L.; Asars, J.A.; Vaerewyck, E.G. Temperature Stabilized Faraday Rotator Current Sensor by Thermal Mechanical Means. U.S. Patent No. 4,612,500, 16 September 1986. [Google Scholar]
- Perdante, C.D.; Ferrari, J.A. Faraday current sensor with temperature monitoring. Appl. Opt. 2005, 44, 6910–6912. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, K.; Gabus, P.; Kostovic, J.; Brändle, H. Optical fiber sensors for the electric power industry. Opt. Lasers Eng. 2005, 43, 511–526. [Google Scholar] [CrossRef]
- Williams, P.A.; Day, G.W.; Rose, A.H. Compensation for temperature dependence of Faraday effect in diamagnetic materials: Application to optical fibre sensors. Electron. Lett. 1991, 27, 1131. [Google Scholar] [CrossRef]
- Muller, G.M.; Frank, A.; Yang, L.; Gu, X.; Bohnert, K. Temperature Compensation of Interferometric and Polarimetric Fiber-Optic Current Sensors with Spun Highly Birefringent Fiber. J. Light. Technol. 2019, 37, 4507–4513. [Google Scholar] [CrossRef]
- Cruden, A.; Andonovic, I.; Richardson, Z.J.; McDonald, J.R. Optical crystal based devices for current and voltage measurement. IEEE Trans. Power Deliv. 1995, 10, 1217–1223. [Google Scholar] [CrossRef]
- Yi, B.; Chu, B.C.; Liu, Y.; Chiang, K.S. Simultaneous temperature and electric current measurement by using different Faraday sensing elements in an optical current sensor. In Proceedings of the Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), Yokohama, Japan, 16–18 June 1999; SPIE: Bellingham, WA, USA, 1999; Volume 3740, pp. 505–508. [Google Scholar]
- Deeter, M.N.; Rose, A.H.; Day, G.W. Fast, Sensitive Magnetic-Field Sensors Based on the Faraday Effect in YIG. J. Light. Technol. 1990, 8, 1838–1842. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, S.Y.; Han, G.R. Growth and characterization of magneto-optical single-crystal ReYbBiIG with temperature-stabilized Faraday rotation. J. Magn. Magn. Mater. 2002, 246, 67–72. [Google Scholar] [CrossRef]
- Kullendorff, N.; Hök, B. Temperature independent Faraday rotation near the band gap in Cd 1-xMnxTe. Appl. Phys. Lett. 1985, 46, 1016–1018. [Google Scholar] [CrossRef]
- Menke, P.; Bosselmann, T. Temperature Compensation in Magnetooptic AC Current Sensors Using an Intelligent AC-DC Signal Evaluation. J. Light. Technol. 1995, 13, 1362–1370. [Google Scholar] [CrossRef]
- Zaidi, S.H.; Tatam, R.P. Faraday-effect magnetometry: Compensation for the temperature-dependent Verdet constant. Meas. Sci. Technol. 1994, 5, 1471–1479. [Google Scholar] [CrossRef]
- Madden, I.W.; Michie, W.C.; Cruden, A.; Niewczas, P.; McDonald, J.R. Temperature compensation for optical current sensors. Opt. Eng. 1999, 38, 1699. [Google Scholar] [CrossRef]
- Liu, T.; Han, J.; Hu, H. Optical Current Sensor with Dual-Wavelength Configuration for Improving Temperature Robustness. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Katsukawa, H.; Ishikawa, H.; Okajima, H.; Cease, T.W. Development of an optical current transducer with a bulk type Faraday sensor for metering. IEEE Trans. Power Deliv. 1996, 11, 702–707. [Google Scholar] [CrossRef]
- Müller, G.M.; Gu, X.; Yang, L.; Frank, A.; Bohnert, K. Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber. Opt. Express 2016, 24, 11164. [Google Scholar] [CrossRef]
- Liu, C.; Wang, D.; Li, C.; Su, K.; Li, D.; Yu, D.; Wang, L.; Si, L.; Jin, J. Fiber optic current sensor temperature compensation through RBF neural network. In Proceedings of the Applied Optics and Photonics China (AOPC 2020), Beijing, China, 30 November–2 December 2020; SPIE: Bellingham, WA, USA, 2020; Volume 1156908, p. 10. [Google Scholar]
- Gubin, V.P.; Isaev, V.A.; Morshnev, S.K.; Sazonov, A.I.; Starostin, N.I.; Chamorovsky, Y.K.; Oussov, A.I. Use of Spun optical fibres in current sensors. Quantum Electron. 2006, 36, 287–291. [Google Scholar] [CrossRef]
- Barlow, A.J.; Ramskov-Hansen, J.J.; Payne, D.N. Birefringence and polarization mode-dispersion in spun single-mode fibers. Appl. Opt. 1981, 20, 2962. [Google Scholar] [CrossRef]
- Peng, N.; Huang, Y.; Wang, S.; Wen, T.; Liu, W.; Zuo, Q.; Wang, L. Fiber optic current sensor based on special spun highly birefringent fiber. IEEE Photonics Technol. Lett. 2013, 25, 1668–1671. [Google Scholar] [CrossRef]
- Laming, R.I.; Payne, D.N. Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers. J. Light. Technol. 1989, 7, 2084–2094. [Google Scholar] [CrossRef] [Green Version]
- Kruk, A.; Mrózek, M. The measurement of Faraday effect of translucent material in the entire visible spectrum. Meas. J. Int. Meas. Confed. 2020, 162, 107912. [Google Scholar] [CrossRef]
- Abudagel, G.S.I.; Petričević, S.; Mihailović, P.; Kovačević, A.; Ristić-Djurović, J.L.; Lekić, M.; Romčević, M.; Ćirković, S.; Trajić, J.; Romčević, N. Improvement of magneto-optical quality of high purity Bi 12 GeO 20 single crystal induced by femtosecond pulsed laser irradiation. Optoelectron. Adv. Mater. Rapid Commun. 2017, 11, 477–481. [Google Scholar]
- Munin, E.; Roversi, J.A.; Villaverde, A.B. Faraday Effect and Energy Gap in Optical Materials. J. Phys. D Appl. Phys. 1992, 25, 1635–1639. [Google Scholar] [CrossRef]
- Gao, G.; Winterstein-Beckmann, A.; Surzhenko, O.; Dubs, C.; Dellith, J.; Schmidt, M.A.; Wondraczek, L. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. Sci. Rep. 2015, 5, 8942. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, C.B.; Van Uitert, L.G.; Grodkiewicz, W.H. Magneto-optical properties of rare earth (III) aluminum garnets. J. Appl. Phys. 1964, 35, 3069–3070. [Google Scholar] [CrossRef]
- Yakovlev, A.I.; Snetkov, I.L.; Dorofeev, V.V.; Motorin, S.E. Magneto-optical properties of high-purity zinc-tellurite glasses. J. Non. Cryst. Solids 2018, 480, 90–94. [Google Scholar] [CrossRef]
- Qian, P.; Wang, S.; Wang, Y. Magneto-optical properties and temperature dependence of diamagnetic lead borate glasses for fiber-optical current transducer. Opt. Mater. 2019, 89, 349–354. [Google Scholar] [CrossRef]
- Zhao, W. Magneto-optic properties and sensing performance of garnet YbBi:YIG. Sensors Actuators A Phys. 2001, 89, 250–254. [Google Scholar] [CrossRef]
- Suzuki, F.; Sato, F.; Oshita, H.; Yao, S.; Nakatsuka, Y.; Tanaka, K. Large Faraday effect of borate glasses with high Tb3+ content prepared by containerless processing. Opt. Mater. 2018, 76, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Man, P.; Chen, Q.; Guo, L.; Hu, X.; Xiao, Y.; Su, L.; Wu, A.; Zhou, Y.; Zeng, F. Influence of Tb3+ concentration on the optical properties and Verdet constant of magneto-optic ABS-PZZ glass. Opt. Mater. 2017, 69, 202–206. [Google Scholar] [CrossRef]
- Dou, R.; Zhang, H.; Zhang, Q.; Zhuang, N.; Liu, W.; He, Y.; Chen, Y.; Cheng, M.; Luo, J.; Sun, D. Growth and properties of TSAG and TSLAG magneto-optical crystals with large size. Opt. Mater. 2019, 96, 109272. [Google Scholar] [CrossRef]
- Jin, W.; Ding, J.; Guo, L.; Gu, Q.; Li, C.; Su, L.; Wu, A.; Zeng, F. Growth and performance research of Tb3Ga5O12 magneto-optical crystal. J. Cryst. Growth 2018, 484, 17–20. [Google Scholar] [CrossRef]
- Hwang, Y.; Chung, S.S.; Um, Y. Giant Faraday rotation in Cd1-xMnxTe (0 <x <0.82) crystals. In Physica Status Solidi (C) Current Topics in Solid State Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; Volume 4, pp. 4453–4456. [Google Scholar]
- Dai, J.; Snetkov, I.L.; Palashov, O.V.; Pan, Y.; Kou, H.; Li, J. Fabrication, microstructure and magneto-optical properties of Tb3Al5O12 transparent ceramics. Opt. Mater. 2016, 62, 205–210. [Google Scholar] [CrossRef]
- Permin, D.A.; Novikova, A.V.; Koshkin, V.A.; Balabanov, S.S.; Snetkov, I.L.; Palashov, O.V.; Smetanina, K.E. Fabrication and magneto-optical properties of Yb2O3 based ceramics. Magnetochemistry 2020, 6, 63. [Google Scholar] [CrossRef]
- Guo, F.; Li, Q.; Zhang, H.; Yang, X.; Tao, Z.; Chen, X.; Chen, J. Czochralski growth, magnetic properties and faraday characteristics of CeAlO3 crystals. Crystals 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Savinkov, V.I.; Sigaev, V.N.; Golubev, N.V.; Sarkisov, P.D.; Masalov, A.V.; Sergeev, A.P. Borogermanate glasses with a high terbium oxide content. J. Non. Cryst. Solids 2010, 356, 1655–1659. [Google Scholar] [CrossRef]
- Li, W.-K.; Guo, G.-Y. A First Principle Study on Magneto-Optical Effects and Magnetism in Ferromagnetic Semiconductors Y3Fe5O12 and Bi3Fe5O12. Phys. Rev. B 2020, 103, 014439. [Google Scholar] [CrossRef]
- Vojna, D.; Slezák, O.; Lucianetti, A.; Mocek, T. Verdet constant of magneto-active materials developed for high-power Faraday devices. Appl. Sci. 2019, 9, 3160. [Google Scholar] [CrossRef] [Green Version]
- Mironov, E.A.; Starobor, A.V.; Snetkov, I.L.; Palashov, O.V.; Furuse, H.; Tokita, S.; Yasuhara, R. Thermo-optical and magneto-optical characteristics of CeF3 crystal. Opt. Mater. 2017, 69, 196–201. [Google Scholar] [CrossRef]
- Elisa, M.; Stefan, R.; Vasiliu, I.C.; Rusu, M.I.; Sava, B.A.; Boroica, L.; Sofronie, M.; Kuncser, V.; Galca, A.C.; Beldiceanu, A.; et al. Thermal, structural, magnetic and magneto-optical properties of dysprosium-doped phosphate glass. J. Non. Cryst. Solids 2019, 521, 119545. [Google Scholar] [CrossRef]
- Slezák, O.; Yasuhara, R.; Lucianetti, A.; Mocek, T. Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant. Opt. Mater. Express 2016, 6, 3683. [Google Scholar] [CrossRef]
- Williams, P.A.; Rose, A.H.; Day, G.W.; Milner, T.E.; Deeter, M.N. Temperature dependence of the Verdet constant in several diamagnetic glasses. Appl. Opt. 1991, 30, 1176. [Google Scholar] [CrossRef]
- Kumari, S.; Chakraborty, S. Study of different magneto-optic materials for current sensing applications. J. Sens. Sens. Syst. 2018, 7, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, M.; Wang, H.; Wang, Q.; Ma, Q.; Li, J. Structures and magneto optical property of diamagnetic TiO2-TeO2-PbO-B2O3 glass. J. Non. Cryst. Solids 2017, 468, 58–66. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, H.; Xiao, X.; Wang, P.; Cui, X.; Lu, M.; Lin, C.; Dai, S.; Peng, B. High Verdet constants and diamagnetic responses of GeS2-In2S3-PbI2 chalcogenide glasses for integrated optics applications. Opt. Express 2017, 25, 20410. [Google Scholar] [CrossRef]
- Ling, H.Y. Theoretical investigation of transmission through a Faraday-active Fabry–Perot étalon. J. Opt. Soc. Am. A 1994, 11, 754. [Google Scholar] [CrossRef]
- Maystre, F.; Bertholds, A. Magneto-optic current sensor using a helical-fiber Fabry–Perot resonator. Opt. Lett. 1989, 14, 587. [Google Scholar] [CrossRef]
- Rosenberg, R.; Rubinstein, C.B.; Herriott, D.R. Resonant Optical Faraday Rotator. Appl. Opt. 1964, 3, 1079. [Google Scholar] [CrossRef]
- Sun, H.; Lei, Y.; Fan, S.; Zhang, Q.; Guo, H. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2017, 381, 129–135. [Google Scholar] [CrossRef]
- Johansson, P.; Khartsev, S.I.; Grishin, A.M. Comparison of Bi3Fe5O12 film giant Faraday rotators grown on (111) and (001) Gd3Ga5O12 single crystals. Thin Solid Films 2006, 515, 477–480. [Google Scholar] [CrossRef]
- Robertson, J.; Larsen, P.; Bongers, P. Epitaxially Grown Bi-Substitute-Idr On Garnet Films For Magneto-Optic Devices. IEEE Trans. Magn. 1975, 11, 1112–1114. [Google Scholar] [CrossRef]
- Zhang, D.; Mei, B.; Zhang, H.; Yang, Q.; Rao, Y. Three inch diameter bismuth-doped thulium iron garnet single-crystal films by liquid phase epitaxy for magneto-optical applications. In Proceedings of the 2015 IEEE International Magnetics Conference, INTERMAG 2015, Beijing, China, 11–15 May 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Prokopov, A.R.; Vetoshko, P.M.; Shumilov, A.G.; Shaposhnikov, A.N.; Kuz’michev, A.N.; Koshlyakova, N.N.; Berzhansky, V.N.; Zvezdin, A.K.; Belotelov, V.I. Epitaxial Bi-Gd-Sc iron-garnet films for magnetophotonic applications. J. Alloys Compd. 2016, 671, 403–407. [Google Scholar] [CrossRef]
- Deghdak, R.; Bouchemat, M.; Lahoubi, M.; Pu, S.; Bouchemat, T.; Otmani, H. Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure. J. Comput. Electron. 2017, 16, 392–400. [Google Scholar] [CrossRef]
- Inoue, M.; Arai, K.; Abe, M.; Fujii, T. Magneto-Optical Properties of One-Dimensional Photonic Crystals Composed of Magnetic Materials. J. Magn. Soc. Jpn. 1999, 23, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Darki, B.S.; Nezhad, A.Z. Magneto-optical properties of asymmetric one-dimensional magneto-photonic crystals. J. Opt. 2019, 21, 015101. [Google Scholar] [CrossRef]
- Yusuf, N.A.; Abu-Aljarayesh, I.; Rousan, A.A.; El-Ghanem, H.M. On the Concentration Dependence of Faraday Rotation in Magnetic Fluids. IEEE Trans. Magn. 1990, 26, 2852–2855. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Du, L.; Yao, C.; Yang, Y. Reciprocity of Faraday effect in ferrofluid: Comparison with magneto-optical glass. Optik 2012, 123, 553–558. [Google Scholar] [CrossRef]
- Karthick, R.; Ramachandran, K.; Srinivasan, R. Study of Faraday effect on Co1−xZnxFe2O4 nanoferrofluids. Nanosyst. Phys. Chem. Math. 2016, 624–628. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.T.; Du, C.W.; Liu, X.D.; Li, Z.G.; Birngruber, R. Wavelength dependence of the Faraday effect and magnetobirefringence in ferrofluid thin films. J. Appl. Phys. 1993, 73, 6139–6141. [Google Scholar] [CrossRef]
- Eerdekens, M.; López-Duarte, I.; Hennrich, G.; Verbiest, T. Thin Films of Tolane Aggregates for Faraday Rotation: Materials and Measurement. Coatings 2019, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Chamorovsky, Y.K.; Starostin, N.I.; Morshnev, S.K.; Gubin, V.P.; Ryabko, M.V.; Sazonov, A.I.; Vorob’ev, I.L. Spun microstructured optical fibresfor Faraday effect current sensors. Quantum Electron. 2009, 39, 1074–1077. [Google Scholar] [CrossRef]
- Smith, K.; Carroll, T.; Bodyfelt, J.D.; Vitebskiy, I.; Chabanov, A.A. Enhanced Transmission and Giant Faraday Effect in Magnetic Metal-Dielectric Photonic Structures. J. Phys. D Appl. Phys. 2012, 46, 165002. [Google Scholar] [CrossRef]
- Fan, B.; Nasir, M.E.; Nicholls, L.H.; Zayats, A.V.; Podolskiy, V.A. Magneto-Optical Metamaterials: Nonreciprocal Transmission and Faraday Effect Enhancement. Adv. Opt. Mater. 2019, 7, 1801420. [Google Scholar] [CrossRef] [Green Version]
- Duggan, R.; Sounas, D.; Alu, A. Optically driven effective Faraday effect in instantaneous nonlinear media. Optica 2019, 6, 1152. [Google Scholar] [CrossRef]
- Chin, J.Y.; Steinle, T.; Wehlus, T.; Dregely, D.; Weiss, T.; Belotelov, V.I.; Stritzker, B.; Giessen, H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, A.; Perruisseau-Carrier, J. Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 2012, 101, 231605. [Google Scholar] [CrossRef] [Green Version]
- Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A.V.; Inoue, M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film. J. Magn. Magn. Mater. 2009, 321, 843–845. [Google Scholar] [CrossRef]
- Osada, M.; Itose, M.; Ebina, Y.; Ono, K.; Ueda, S.; Kobayashi, K.; Sasaki, T. Gigantic magneto-optical effects induced by (FeCo) -cosubstitution in titania nanosheets. Appl. Phys. Lett. 2008, 92, 253110. [Google Scholar] [CrossRef]
- Vandendriessche, S.; Van Cleuvenbergen, S.; Willot, P.; Hennrich, G.; Srebro, M.; Valev, V.K.; Koeckelberghs, G.; Clays, K.; Autschbach, J.; Verbiest, T. Giant faraday rotation in mesogenic organic molecules. Chem. Mater. 2013, 25, 1139–1143. [Google Scholar] [CrossRef] [Green Version]
- Christofi, A.; Kawaguchi, Y.; Alù, A.; Khanikaev, A.B. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett. 2018, 43, 1838. [Google Scholar] [CrossRef]
- Taboada, E.; Del Real, R.P.; Gich, M.; Roig, A.; Molins, E. Faraday rotation measurements in maghemite-silica aerogels. J. Magn. Magn. Mater. 2006, 301, 175–180. [Google Scholar] [CrossRef]
- Espina-Hernández, J.H.; Michlmayr, S.; Piepgras, R.; Zagar, B. The magneto-optical response of two Faraday crystals from Matesy: A case study. J. Phys. Conf. Ser. 2018, 1065, 32003. [Google Scholar] [CrossRef]
- Rietman, S.; Biela, J. Sensor design for a current measurement system with high bandwidth and high accuracy based on the faraday effect. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe, Genova, Italy, 3–5 September 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Rose, A.H.; Deeter, M.N.; Day, G.W. Submicroampere per Root Hz, high bandwidth current sensor based on the faraday effect in Ga:YIG. In Proceedings of the 8th Optical Fiber Sensors Conference, Monterey, CA, USA, 29–31 January 1992; Optical Society of America: Washington, DC, USA, 1992; pp. 394–397. [Google Scholar]
- Nascimento, I.M.; Brígida, A.C.S.; Baptista, J.M.; Costa, J.C.W.A.; Martinez, M.A.G.; Jorge, P.A.S. Novel optical current sensor for metering and protection in high power applications. Instrum. Sci. Technol. 2016, 44, 148–162. [Google Scholar] [CrossRef]
- Gerber, D.; Biela, J. High-Dynamic and High-Precise Optical Current Measurement System Based on the Faraday Effect. IEEE Trans. Plasma Sci. 2015, 43, 3550–3554. [Google Scholar] [CrossRef]
- Drexler, P.; Fiala, P. Utilization of Faraday Mirror in Fiber Optic Current Sensors. Radioengineering 2008, 17, 101–107. [Google Scholar]
- Lenner, M.; Frank, A.; Yang, L.; Roininen, T.M.; Bohnert, K. Long-Term Reliability of Fiber-Optic Current Sensors. IEEE Sens. J. 2020, 20, 823–832. [Google Scholar] [CrossRef]
Faraday Material | Glass/Crystal | (rad/T)/λ (nm) | (rad/mm)/λ (nm) | Linear Birefringence | Pockels Effect | |
---|---|---|---|---|---|---|
Bi12GeO20 [46,158] | Crystal | 72/633 | 2.1/633 | 0.6065/633 (T = 293 K) | No | Yes |
Cd0.57Mn0.43Te [60] | Crystal | 3140/633 | 7.85 | No | No | Yes |
BK-7 glass [159] | Glass | 4.3/633 | >8.6 | No | Yes | Yes |
Tb3+-dopedGeO2-B2O3-Al2O3Ga2O3 [160] | Glass | 119/633 | >2.4 | No data | No | No data |
Faraday Material | OPL | αl | |||
---|---|---|---|---|---|
Cd0.57Mn0.43Te [60] | 1.3 mm | 3140 | 4 | 4 | 0.52 |
(TmBi)3(FeGa)5O12 on GGG [189] | 60 μm | 700 | 75 | 4.2 | |
Ferrofluid [22] | 2.8 mm | 122.43×103 | 2.9 | 311 | 0.74 |
Magnetometry | Current Sensing | Current Sensing | |
---|---|---|---|
Current Sensing | |||
Configuration | 1 | 2 | 3 |
FOS type | Extrinsic | Extrinsic | Intrinsic |
Portability | Yes | Yes | No |
The best normalization method available | By heterodyne detection | ||
Linear response | No | No | Yes |
Measurement range | Wide, limited by phase modulator | ||
Temperature compensation methods available (as listed in Section 4) | 4, 5, 6 (for birefringent FM), 8, 9 (for FM that possesses OA) and 10 | 4, 5, 6 (for birefringent FM), 8, 9 (for FM that possesses OA) and 10 | 3, 6, 8 and 10 |
Sensitivity | Determined by magneto-optical quality of FM and detector noise | Determined by magneto-optical quality of FM, detector noise and concentrator properties | Determined by the Verdet constant of OF, number of OF coils and detector noise |
Limiting factor for frequency range | FM and optoelectronic block | Concentrator properties | Phase modulator frequency or time of flight (for long-sensing OF) |
Full dielectric measurement head | Yes | No | Yes |
Main problem to be solved | Low modulation depth | Concentrator hysteresis | Temperature- and vibration-dependent birefringence of sensing OF |
Sensitivity to other magnetic field sources | |||
Main advantages | Totally dielectric measuring head | Portability and simplicity | Linear response and wide measurement range |
No EMI | |||
Possible application | High-speed magnetic field measurement with good spatial resolution | Portable OCT for power system monitoring | Static OCT for smart grids |
Pulse current measurement | |||
Cost | Low | Moderate | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailovic, P.; Petricevic, S. Fiber Optic Sensors Based on the Faraday Effect. Sensors 2021, 21, 6564. https://doi.org/10.3390/s21196564
Mihailovic P, Petricevic S. Fiber Optic Sensors Based on the Faraday Effect. Sensors. 2021; 21(19):6564. https://doi.org/10.3390/s21196564
Chicago/Turabian StyleMihailovic, Pedja, and Slobodan Petricevic. 2021. "Fiber Optic Sensors Based on the Faraday Effect" Sensors 21, no. 19: 6564. https://doi.org/10.3390/s21196564
APA StyleMihailovic, P., & Petricevic, S. (2021). Fiber Optic Sensors Based on the Faraday Effect. Sensors, 21(19), 6564. https://doi.org/10.3390/s21196564