The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance
Abstract
:1. Introduction
2. Sensitivity and Selectivity Requirements for Environmental AMR Surveillance
Maximising Sensitivity of DNA-DNA Hybridisation
3. Sensing Methods That May Meet the Requirements for an Environmental Surveillance System
3.1. Nucleic Acid Amplification-Based Methods
3.2. Surface Immobilized DNA Technologies
3.3. Combined Methods
3.4. Sample Preparation Technology
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Shamsipur, M.; Nasirian, V.; Mansouri, K.; Barati, A.; Veisi-Raygani, A.; Kashanian, S. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal. 2017, 136, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymann, D.; Ross, E. Preserve the Effectives of Antibiotics with a Global Treaty. Available online: https://www.chathamhouse.org/2019/06/preserve-effectiveness-antibiotics-global-treaty (accessed on 30 September 2021).
- O’Neill, J. The Review on Antimicrobial Resistance; HM Government and the Wellcome Trust: London, UK, 2016. [Google Scholar]
- Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; Le Gall, F.G.; Marquez, P.V. Drug-Resistant Infections A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017; Volume 2. [Google Scholar]
- Boolchandani, M.; D’Souza, A.W.; Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 2019, 20, 356–370. [Google Scholar] [CrossRef] [PubMed]
- IACG members; OIE; WHO; World Bank. Surveillance and Monitoring for Antimicrobial Use and Resistance; IACG Discussion Paper; Interagency Coordination Group on Antimicrobial Resistance: New York, NY, USA, 2018. [Google Scholar]
- GLASS; WHO. Global Antimicrobial Resistance and Use Surveillance System; (GLASS) Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Roder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Wade, W. Unculturable bacteria—The uncharacterised organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, P.M.C.; Flach, C.F.; Larsson, D.G.J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 2019, 130, 104880. [Google Scholar] [CrossRef]
- Centres for Disease Control and Prevention, Antibiotics Resistance Threats in the United States Report 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 5 October 2021).
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejia-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T.; et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Furlan, J.P.R.; Dos Santos, L.D.R.; Moretto, J.A.S.; Ramos, M.S.; Gallo, I.F.L.; Alves, G.A.D.; Paulelli, A.C.; Rocha, C.C.S.; Cesila, C.A.; Gallimberti, M.; et al. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil. Sci. Total Environ. 2020, 726, 138100. [Google Scholar] [CrossRef]
- Stange, C.; Yin, D.; Xu, T.; Guo, X.; Schafer, C.; Tiehm, A. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China. Sci. Total Environ. 2019, 655, 337–346. [Google Scholar] [CrossRef]
- Guan, Y.; Jia, J.; Wu, L.; Xue, X.; Zhang, G.; Wang, Z. Analysis of Bacterial Community Characteristics, Abundance of Antibiotics and Antibiotic Resistance Genes Along a Pollution Gradient of Ba River in Xi’an, China. Front. Microbiol. 2018, 9, 3191. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Wang, H.; Fang, T.; Wang, Y.; Ye, Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 2019, 125, 90–96. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Li, N.; Guarnera, M.; Jiang, F. Quantification of Plasma miRNAs by Digital PCR for Cancer Diagnosis. Biomark Insights 2013, 8, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Ding, Z.; Suehiro, J. Comparison of Sensitivity and Quantitation between Microbead Dielectrophoresis-Based DNA Detection and Real-Time PCR. Biosens 2017, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Forootan, A.; Sjoback, R.; Bjorkman, J.; Sjogreen, B.; Linz, L.; Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.R.; Mao, M.; Jones, A.R.; RBurchard, J.; Marton, M.J.; Shannon, K.W. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001, 19, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Nava, E.; Busch, L.; Mejia-Radillo, Y.; Boehm, K.; Hinz, H.-J. Experiment and Prediction—A Productive Symbiosis in Studies on the Thermodynamics of DNA Oligomers. J. Phys. Chem. 2010, 114, 16087–16098. [Google Scholar] [CrossRef]
- Yazawa, K.; Furusawa, H. Probing Multiple Binding Modes of DNA Hybridization: A Comparison between Single-Molecule Observations and Ensemble Measurements. ACS Omega 2018, 3, 2084–2092. [Google Scholar] [CrossRef]
- Bodrossy, L.; Sessitsch, A. Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol. 2004, 7, 245–254. [Google Scholar] [CrossRef]
- Kostic, T.; Weilharter, A.; Sessitsch, A.; Bodrossy, L. High-sensitivity, polymerase chain reaction-free detection of microorganisms and their functional genes using 70-mer oligonucleotide diagnostic microarray. Anal. Biochem. 2005, 346, 333–335. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 27, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Paulus, G.K.; Hornstra, L.M.; Medema, G. International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. Sci. Total Environ. 2020, 706, 135733. [Google Scholar] [CrossRef]
- Ng, C.; Gin, K.Y.-H. Monitoring Antimicrobial Resistance Dissemination in Aquatic Systems. Water 2019, 11, 71. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zhao, W.; Xu, T.; Zheng, B.; Yin, D. Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China. Environ. Sci Eur. 2019, 31, 1–9. [Google Scholar] [CrossRef]
- Ranjbar, R.; Khamesipour, F.; Jonaidi-Jafari, N.; Rahimi, E. Helicobacter pylori isolated from Iranian drinking water: vacA, cagA, iceA, oipA and babA2 genotype status and antimicrobial resistance properties. Febs. Open Bio. 2016, 6, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Lyimo, B.; Buza, J.; Subbiah, M.; Smith, W.; Call, D.R. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: A cross-sectional study. BMC Microbiol. 2016, 16, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancano, S.; Campana, E.H.; Felix, T.P.; Barrueto, L.R.L.; Pereira, P.S.; Picao, R.C. Frequency and diversity of Stenotrophomonas spp. carrying blaKPC in recreational coastal waters. Water Res. 2020, 185, 116210. [Google Scholar] [CrossRef]
- Gerhard, W.A.; Gunsch, C.K. Higher normalized concentrations of tetracycline resistance found in ballast and harbor water compared to ocean water. Mar. Pollut. Bull. 2020, 151, 110796. [Google Scholar] [CrossRef] [PubMed]
- Bueno, I.; Verdugo, C.; Jimenez-Lopez, O.; Alvarez, P.P.; Gonzalez-Rocha, G.; Lima, C.A.; Travis, D.A.; Wass, B.; Zhang, Q.; Ishii, S.; et al. Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. Int. J. Hyg. Environ. Health 2020, 223, 56–64. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Ilia, A.; Mpekoulis, G.; Papadopoulou, C. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiot 2019, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Fernandes, T.; Riquelme, M.V.; Zhu, N.; Pruden, A.; Manaia, C.M. Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Int. J. Environ. Res. Public Health 2019, 16, 4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, C.M.; Harris, A.; Ryan, J.P.; Roman, B.; Marin, R., 3rd; Jensen, S.; Everlove, C.; Birch, J.; Dzenitis, J.M.; Pargett, D.; et al. Underwater application of quantitative PCR on an ocean mooring. PLoS ONE 2011, 6, e22522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuba, T.; Miyaji, A.; Okamoto, T.; Yamamoto, T.; Kaneda, S.; Fujii, T. Integrated in situ genetic analyzer for microbiology in extreme environments. Rsc Adv. 2011, 1, 1567–1573. [Google Scholar] [CrossRef]
- Amplification of a 100 bp Fragment in 1 Minute and 59 Seconds; Molecular Biology Systems BV: Goes, The Netherlands, 2016.
- Shanmugakani, R.K.; Srinivasan, B.; Glesby, M.J.; Westblade, L.F.; Cardenas, W.B.; Raj, T.; Erickson, D.; Mehta, S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab Chip 2020, 20, 2607–2625. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Z.; Ding, S.; Wang, S. A TaqMan-based multiplex real-time PCR assay for the rapid detection of tigecycline resistance genes from bacteria, faeces and environmental samples. BMC Microbiol. 2020, 20, 174. [Google Scholar] [CrossRef]
- Walsh, F.; Ingenfeld, A.; Zampicolli, M.; Hilber-Bodmer, M.; Frey, J.E.; Duffy, B. Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. J. Microbiol. Methods 2011, 86, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Waseem, H.; Jameel, S.; Ali, J.; Saleem Ur Rehman, H.; Tauseef, I.; Farooq, U.; Jamal, A.; Ali, M.I. Contributions and Challenges of High Throughput qPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review. Molecules 2019, 24, 163. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, G.; Sommer, S. Shedding Light on PCR Contamination. Nature 1990, 343, 27. [Google Scholar] [CrossRef]
- Rand, K.H.; Houck, H. Taq Polymerase Contains Bacterial DNA of Unknown Origin. Mol. Cell. Probes 1990, 4, 445. [Google Scholar] [CrossRef]
- Deragon, J.-M.; Sinnett, D.; Mitchell, G.; Potier, M.; Labuda, D. Use of Γ Irradiation to Eliminate DNA Contamination for PCR. Nucleic Acid Res. 1990, 18, 6149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimino, G.D.; Metchette, K.; Isaacs, S.T.; Zhu, Y.S. More False-Positive Problems. Nature 1990, 345, 773. [Google Scholar] [CrossRef]
- Wally, N.; Schneider, M.; Thannesberger, J.; Kastner, M.T.; Bakonyi, T.; Indik, S.; Rattei, T.; Bedarf, J.; Hildebrand, F.; Law, J.; et al. Plasmid DNA Contaminant in Molecular Reagents. Sci. Rep. 2019, 9, 1652. [Google Scholar] [CrossRef] [PubMed]
- Frye, J.G.; Lindsey, R.L.; Rondeau, G.; Porwollok, S.; Long, F.; McClelland, M.; Jackson, C.R.; Englen, M.D.; Minersmann, R.J.; Berrang, M.E.; et al. Development of a DNA Microarray to Detect Antimicrobial Resistance Genes Identified in the National Center for Biotechnology Information Database. Microb. Drug Resist. 2010, 16, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Rath, C.; Woehrle, J.; Meyer, P.A.; Ben Ammar, N.; Kilb, N.; Brandstetter, T.; Proll, F.; Proll, G.; Urban, G.; et al. Low-Volume Label-Free Detection of Molecule-Protein Interactions on Microarrays by Imaging Reflectometric Interferometry. SLAS Technol. 2017, 22, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, Y.; Yang, Q.; Yuan, N.; Zhang, W. Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens. Sensors 2019, 19, 4916. [Google Scholar] [CrossRef] [Green Version]
- Reta, N.; Saint, C.P.; Michelmore, A.; Prieto-Simon, B.; Voelcker, N.H. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Appl. Mater. Interfaces 2018, 10, 6055–6072. [Google Scholar] [CrossRef]
- Wang, S.; Sha, X.; Yu, S.; Zhao, Y. Nanocalorimeters for biomolecular analysis and cell metabolism monitoring. Biomicrofluidics 2020, 14, 011503. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Zhang, H.; Li, Y.; Liu, L.; Chen, Y.; Qiu, X.; Yu, D. Development of a Portable SPR Sensor for Nucleic Acid Detection. Micromachines 2020, 11, 526. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luong, J.H.T. Quartz Crystal Microbalance–Based Sensors. In Handbook of Immunoassay Technologies; Academic Press: Cambridge, CA, USA, 2018; pp. 333–357. [Google Scholar] [CrossRef]
- Nair, P.R.; Alam, M.A. Theory of “Selectivity” of label-free nanobiosensors: A geometro-physical perspective. J. Appl. Phys. 2010, 107, 64701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.A.; Wangensteen, O.S.; O’Gorman, E.J.; Mariani, S.; Sims, D.W.; Genner, M.J. Persistence of environmental DNA in marine systems. Commun. Biol. 2018, 1, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesakumar, N.; Kesavan, S.; Li, C.-Z.; Alwarappan, S. Microfluidic Electrochemical Devices for Biosensing. J. Anal. Test 2019, 3, 3–18. [Google Scholar] [CrossRef]
- Krismastuti, F.S.H.; Dewi, M.R.; Prieto-Simon, B.; Nann, T.; Voelcker, N.H. Disperse-and-Collect Approach for the Type-Selective Detection of Matrix Metalloproteinases in Porous Silicon Resonant Microcavities. ACS Sens. 2017, 2, 203–209. [Google Scholar] [CrossRef]
- Hong, L.; Li, H.; Yang, H.; Sengupta, K. Integrated Angle-Insensitive Nanoplasmonic Filters for Ultraminiaturized Fluorescence Microarray in a 65 nm Digital CMOS Process. ACS Photonics 2018, 5, 4312–4322. [Google Scholar] [CrossRef]
- Ogram, A.; Saylet, S.; Barkay, T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 1987, 7, 57–66. [Google Scholar] [CrossRef]
- Samuel Dequiedt, M.L.L.; Maron, P.A.; Mougel, C.; Chemidlin Preévost-Boureé, N.; Morin, F.; Cecchetto, A.; Jolivet, C.; Arrouays, D.; Lemanceau, P. Platform GenoSol—A new tool for conserving and exploring soil microbial diversity. Environ. Microbiol. Rep. 2009, 1, 97–99. [Google Scholar]
- Maron, P.-A.; Lejon, D.P.H.; Carvalho, E.; Bizet, K.; Lemanceau, P.; Ranjard, L.; Mougel, C. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ. 2005, 39, 3687–3695. [Google Scholar] [CrossRef]
- Pierre-Alain, M.; Christophe, M.; Severine, S.; Houria, A.; Philippe, L.; Lionel, R. Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Microb. Ecol. 2007, 53, 426–434. [Google Scholar] [CrossRef]
- Roose-Amsaleg, C.L.; Garnier-Sillam, E.; Harry, M. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil. Ecol. 2001, 18, 47–60. [Google Scholar] [CrossRef]
- Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 1996, 62, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 2017, 12, e0179251. [Google Scholar] [CrossRef]
- Staley, C.; Sadowsky, M.J. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. J. Microbiol. Methods 2018, 154, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Delmont, T.O.; Simonet, P.; Vogel, T.M. Mastering methodological pitfalls for surviving the metagenomic jungle. BioEssays 2013, 35, 744–754. [Google Scholar] [CrossRef]
- Felczykowska, A.; Krajewska, A.; Zielinska, S.; Los, J.M. Sampling, metadata and DNA extraction—Important steps in metagenomic studies. Acta Biochim. Pol. 2015, 62, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, M.G.; Mühl, H.; Disqué, C. Bacterial and Fungal DNA Extraction from Blood Samples: Manual Protocols. In Sepsis; Humana Press: New York, NY, USA, 2015; pp. 109–119. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Fu, S.; Zhan, H. Methods for extracting DNA from environmental samples. Huanjing Wuran Yu Fangzhi. Huanjing Wuran Yu Fangzhi 2007, 29, 537–540. [Google Scholar]
- Mbareche, H.; Brisebois, E.; Veillette, M.; Duchaine, C. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. Sci. Total Environ. 2017, 599-600, 2095–2104. [Google Scholar] [CrossRef]
- Guerra, V.; Beule, L.; Lehtsaar, E.; Liao, H.L.; Karlovsky, P. Improved Protocol for DNA Extraction from Subsoils Using Phosphate Lysis Buffer. Microorganisms 2020, 8, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanouchi, K.; Takeuchi, M.; Arima, H.; Tsujiguchi, T. Development of a method to extract protozoan DNA from black soil. Parasite Epidemiol. Control 2019, 4, e00081. [Google Scholar] [CrossRef]
- Dimitrov, M.R.; Veraart, A.J.; de Hollander, M.; Smidt, H.; van Veen, J.A.; Kuramae, E.E. Successive DNA extractions improve characterization of soil microbial communities. PeerJ 2017, 5, e2915. [Google Scholar] [CrossRef]
- Bruno, A.; Sandionigi, A.; Galimberti, A.; Siani, E.; Labra, M.; Cocuzza, C.; Ferri, E.; Casiraghi, M. One step forwards for the routine use of high-throughput DNA sequencing in environmental monitoring. An efficient and standardizable method to maximize the detection of environmental bacteria. Microbiologyopen 2017, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Young, J.M.; Weyrich, L.S.; Clarke, L.J.; Cooper, A. Residual soil DNA extraction increases the discriminatory power between samples. Forensic Sci. Med. Pathol. 2015, 11, 268–272. [Google Scholar] [CrossRef]
- Bruner, E.A.; Okubara, P.A.; Abi-Ghanem, R.; Brown, D.J.; Reardon, C.L. Use of pressure cycling technology for cell lysis and recovery of bacterial and fungal communities from soil. Biotechniques 2015, 58, 171–180. [Google Scholar] [CrossRef]
- Fatima, F.; Pathak, N.; Rastogi Verma, S. An Improved Method for Soil DNA Extraction to Study the Microbial Assortment within Rhizospheric Region. Mol. Biol. Int. 2014, 2014, 518960. [Google Scholar] [CrossRef] [PubMed]
- Woodhall, J.W.; Webb, K.M.; Giltrap, P.M.; Adams, I.P.; Peters, J.C.; Budge, G.E.; Boonham, N. A new large scale soil DNA extraction procedure and real-time PCR assay for the detection of Sclerotium cepivorum in soil. Eur. J. Plant Pathol. 2012, 134, 467–473. [Google Scholar] [CrossRef]
- Xie, J.-P.; Wu, L.-Y.; Nostrand, J.D.; He, Z.-L.; Lue, Z.-M.; Yu, H.; Xiong, J.-B.; Liu, X.-X.; Zhou, J.-Z. Improvements on environmental DNA extraction and purification procedures for matagenomic analysis. J. Cent. South Univ. 2012, 19, 3055–3063. [Google Scholar] [CrossRef]
- Paul, T.; Basu, S.; Sarkar, K. SPION-mediated soil DNA extraction and comparative analysis with conventional and commercial kit-based protocol. 3 Biotech 2014, 4, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Tong, R.; Zhang, L.; Hu, C.; Chen, X.; Song, Q.; Lou, K.; Tang, X.; Chen, Y.; Gong, X.; Gao, Y.; et al. An Automated and Miniaturized Rotating-Disk Device for Rapid Nucleic Acid Extraction. Micromachines 2019, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics 2014, 8, 044118. [Google Scholar] [CrossRef] [Green Version]
- Philippot, L.; Abbate, C.; Bispo, A.; Chesnot, T.; Hallin, S.; Lemanceau, P.; Lindström, K.; Pandard, P.; Romero, E.; Schloter, M.; et al. Soil microbial diversity: An ISO standard for soil DNA extraction. J. Soils Sediment 2010, 10, 1344–1345. [Google Scholar] [CrossRef]
- Petric, I.; Philippot, L.; Abbate, C.; Bispo, A.; Chesnot, T.; Hallin, S.; Laval, K.; Lebeau, T.; Lemanceau, P.; Leyval, C.; et al. Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—Method to directly extract DNA from soil samples”. J. Microbiol. Methods 2011, 84, 454–460. [Google Scholar] [CrossRef]
- Terrat, S.; Plassart, P.; Bourgeois, E.; Ferreira, S.; Dequiedt, S.; Adele-Dit-De-Renseville, N.; Lemanceau, P.; Bispo, A.; Chabbi, A.; Maron, P.A.; et al. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microb. Biotechnol. 2015, 8, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Plassart, P.; Terrat, S.; Thomson, B.; Griffiths, R.; Dequiedt, S.; Lelievre, M.; Regnier, T.; Nowak, V.; Bailey, M.; Lemanceau, P.; et al. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS ONE 2012, 7, e44279. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.L.; Darling, A.E.; Eisen, J.A. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community. PLoS ONE 2010, 5, e10209. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendron, L.; Verreault, D.; Veillette, M.; Moineau, S.; Duchaine, C. Evaluation of Filters for the Sampling and Quantification of RNA Phage Aerosols. Aerosol. Sci. Technol. 2010, 44, 893–901. [Google Scholar] [CrossRef]
- Fredricks, D.N.; Smith, C.; Meier, A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 2005, 43, 5122–5128. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Zhang, T. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl. Microbiol. Biotechnol. 2013, 97, 4607–4616. [Google Scholar] [CrossRef] [Green Version]
- Starke, I.C.; Vahjen, W.; Pieper, R.; Zentek, J. The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons. Mol. Biol. Int. 2014, 2014, 548683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, G.; Cox, F.; Kittelmann, S.; Miri, V.H.; Zethof, M.; Noel, S.J.; Waghorn, G.C.; Janssen, P.H. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 2013, 8, e74787. [Google Scholar] [CrossRef] [Green Version]
- Iker, B.C.; Bright, K.R.; Pepper, I.L.; Gerba, C.P.; Kitajima, M. Evaluation of commercial kits for the extraction and purification of viral nucleic acids from environmental and fecal samples. J. Virol. Methods 2013, 191, 24–30. [Google Scholar] [CrossRef]
- Wagner Mackenzie, B.; Waite, D.W.; Taylor, M.W. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 2015, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Amir, A.; Hyde, E.R.; Metcalf, J.L.; Song, S.J.; Knight, R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014, 15, 564–566. [Google Scholar] [CrossRef]
- Saenz, J.S.; Roldan, F.; Junca, H.; Arbeli, Z. Effect of the extraction and purification of soil DNA and pooling of PCR amplification products on the description of bacterial and archaeal communities. J. Appl. Microbiol. 2019, 126, 1454–1467. [Google Scholar] [CrossRef]
- Gobbi, A.; Santini, R.G.; Filippi, E.; Ellegaard-Jensen, L.; Jacobsen, C.S.; Hansen, L.H. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS ONE 2019, 14, e0200979. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, S.; Radkowski, P.; Blendowska, A.; Ludwig-Galezowska, A.; Los, J.M.; Los, M. The choice of the DNA extraction method may influence the outcome of the soil microbial community structure analysis. Microbiologyopen 2017, 6, e00453. [Google Scholar] [CrossRef]
- Santos, S.S.; Nunes, I.; Nielsen, T.K.; Jacquiod, S.; Hansen, L.H.; Winding, A. Soil DNA Extraction Procedure Influences Protist 18S rRNA Gene Community Profiling Outcome. Protist 2017, 168, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.S.; Nielsen, T.K.; Hansen, L.H.; Winding, A. Comparison of three DNA extraction methods for recovery of soil protist DNA. J. Microbiol. Methods 2015, 115, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sagar, K.; Singh, S.P.; Goutam, K.K.; Konwar, B.K. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J. Microbiol. Methods 2014, 97, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Walker, A.W.; Berry, S.H.; Duncan, S.H.; Farquarson, F.M.; Louis, P.; Thomson, J.M.; Consortium, U.I.G.; Satsangi, J.; Flint, H.J.; et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 2014, 9, e88982. [Google Scholar] [CrossRef]
- Rittenour, W.R.; Park, J.H.; Cox-Ganser, J.M.; Beezhold, D.H.; Green, B.J. Comparison of DNA extraction methodologies used for assessing fungal diversity via ITS sequencing. J. Environ. Monit. 2012, 14, 766–774. [Google Scholar] [CrossRef]
- Xie, K.; Deng, Y.; Zhang, X.; Wang, X.; Kang, G.; Bai, L.; Huang, H. Biases in Prokaryotic Community Amplicon Sequencing Affected by DNA Extraction Methods in Both Saline and Non-saline Soil. Front. Microbiol. 2018, 9, 1796. [Google Scholar] [CrossRef] [PubMed]
- Carrigg, C.; Rice, O.; Kavanagh, S.; Collins, G.; O’Flaherty, V. DNA extraction method affects microbial community profiles from soils and sediment. Appl. Microbiol. Biotechnol. 2007, 77, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.N.; Bryant, J.E.; Madsen, E.L.; Ghiorse, W.C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 1999, 65, 4715–4724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krsek, M.; Wellington, E.M.H. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Methods 1999, 39, 1–16. [Google Scholar] [CrossRef]
- Frostegard, A.; Courtois, S.; Ramisse, V.; Clerc, S.; Bernillon, D.; Le Gall, F.; Jeannin, P.; Nesme, X.; Simonet, P. Quantification of Bias Related to the Extraction of DNA Directly from Soils. Appl. Environ. Microbiol. 1999, 65, 5409–5420. [Google Scholar] [CrossRef] [Green Version]
Target | Method | Findings | Reference |
---|---|---|---|
Bacteria/ eukaryote/ archea | Metagenomics | Abundance of microbes varied significantly with DNA extraction methods. | [93] |
Bacteria | Metagenomics; PCR-based sequencing | Bacterial DNA contamination in commercial DNA extraction kits obstructed analysis. | [94] |
Virus | Quantitative PCR | Extraction protocol affected recovery yields. | [95] |
Fungi | Quantitative PCR | Extraction protocol affected recovery yields. | [96] |
Bacteria | PCR-based sequencing | Lysis method biased estimation of certain phyla. | [97] |
Bacteria | PCR-based sequencing | Lysis method biased estimation of bacterial distribution. | [98] |
Bacteria/fungi/ archea | Quantitative PCR | Ten extraction kits generated significantly divergent results. | [99] |
Viruses | Quantitative PCR | Extraction protocol affected recovery yields. | [100] |
Bacteria | PCR-based sequencing | Bacteria abundance varied significantly with DNA extraction method. | [101] |
Bacteria | PCR-based sequencing | Bacterial DNA contamination in commercial DNA extraction kits obstructed analysis. | [102] |
Bacteria/archea | PCR-based sequencing | Microbial abundane varied significantly with DNA extraction method. | [103] |
Bacteria | Quantitative PCR | Bead sizes used in lysis step affected DNA yields | [104] |
Bacteria | Metagenomics + PCR-based sequencing | Eight extraction kits generated significantly divergent results. | [105] |
Eukaryota | Metagenomics + PCR-based sequencing | Three extraction kits generated significantly divergent results. | [106] |
Eukaryota | PCR-based sequencing + quantitative PCR | Three extraction kits generated significantly divergent results. | [107] |
Bacteria | Metagenomics | Five extraction kits generated significantly divergent results. | [108] |
Bacteria | Metagenomics + quantitative PCR | Two extraction kits generated significantly divergent results. | [109] |
Fungi | PCR-based sequencing + quantitative PCR | Three extraction kits generated significantly divergent results. | [110] |
Bacteria | PCR-based sequencing | Lysis protocol biased results. | [111] |
All | Metagenomics | Comment on the delusion of an all-purpose environmental DNA extraction technique. | [73] |
Bacteria | DGGE profiling | Four in situ lysing protocols produced significantly divergent results. | [112] |
Bacteria | DGGE profiling | Extraction and purification protocols affected yield and average molecular weight of extracted DNA. | [113] |
Bacteria | DGGE profiling | Extraction and purification protocol affected yield and average molecular weight of extracted DNA. | [114] |
Bacteria | Blotting; DGGE profiling | Lysis protocol biased Gram-negative and positive bacteria. | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caron, K.; Craw, P.; Richardson, M.B.; Bodrossy, L.; Voelcker, N.H.; Thissen, H.; Sutherland, T.D. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. Sensors 2021, 21, 6625. https://doi.org/10.3390/s21196625
Caron K, Craw P, Richardson MB, Bodrossy L, Voelcker NH, Thissen H, Sutherland TD. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. Sensors. 2021; 21(19):6625. https://doi.org/10.3390/s21196625
Chicago/Turabian StyleCaron, Karine, Pascal Craw, Mark B. Richardson, Levente Bodrossy, Nicolas H. Voelcker, Helmut Thissen, and Tara D. Sutherland. 2021. "The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance" Sensors 21, no. 19: 6625. https://doi.org/10.3390/s21196625
APA StyleCaron, K., Craw, P., Richardson, M. B., Bodrossy, L., Voelcker, N. H., Thissen, H., & Sutherland, T. D. (2021). The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. Sensors, 21(19), 6625. https://doi.org/10.3390/s21196625