A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling
Abstract
:1. Introduction
2. Literature Review
3. Data
4. Methodology
4.1. Data Preprocessing
4.2. Feature Extraction
4.3. Classification
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozcan, K.; Mahabalagiri, A.K.; Casares, M.; Velipasalar, S. Automatic fall detection and activity classification by a wearable embedded smart camera. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 125–136. [Google Scholar] [CrossRef]
- WHO. Falls: Key Facts; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- CDC. Keep on Your Feet—Preventing Older Adult Falls | CDC; Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA, USA, 2021.
- Stevens, J.A.; Ballesteros, M.F.; Mack, K.A.; Rudd, R.A.; DeCaro, E.; Adler, G. Gender differences in seeking care for falls in the aged Medicare population. Am. J. Prev. Med. 2012, 43, 59–62. [Google Scholar] [CrossRef]
- Nations, U. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Department of Economics and Social Affairs PD, Ed.; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [Green Version]
- De Lima, A.L.S.; Evers, L.J.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Halabi, N.; Daou, R.A.Z.; Achkar, R.; Hayek, A.; Börcsök, J. Monitoring system for prediction and detection of epilepsy seizure. In Proceedings of the Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), Beirut, Lebanon, 3–5 July 2019; pp. 1–7. [Google Scholar]
- Fleming, J.; Brayne, C. Inability to get up after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90. BMJ 2008, 337, a2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, M.; Hotrabhavananda, B.; Moore, M.; Skubic, M. VAMPIR-an automatic fall detection system using a vertical PIR sensor array. In Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; pp. 163–166. [Google Scholar]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Fall detection from human shape and motion history using video surveillance. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007; Volume 2, pp. 875–880. [Google Scholar]
- Bevilacqua, V.; Nuzzolese, N.; Barone, D.; Pantaleo, M.; Suma, M.; D’Ambruoso, D.; Volpe, A.; Loconsole, C.; Stroppa, F. Fall detection in indoor environment with kinect sensor. In Proceedings of the IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Alberobello, Italy, 23–25 June 2014; pp. 319–324. [Google Scholar]
- Light, J.; Cha, S.; Chowdhury, M. Optimizing pressure sensor array data for a smart-shoe fall monitoring system. In Proceedings of the IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Nadeem, A.; Mehmood, A.; Rizwan, K. A dataset build using wearable inertial measurement and ECG sensors for activity recognition, fall detection and basic heart anomaly detection system. Data Brief 2019, 27, 104717. [Google Scholar] [CrossRef] [PubMed]
- Dhole, S.R.; Kashyap, A.; Dangwal, A.N.; Mohan, R. A novel helmet design and implementation for drowsiness and fall detection of workers on-site using EEG and Random-Forest Classifier. Procedia Comput. Sci. 2019, 151, 947–952. [Google Scholar] [CrossRef]
- Xi, X.; Tang, M.; Miran, S.M.; Luo, Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 2017, 17, 1229. [Google Scholar] [CrossRef]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Tolkiehn, M.; Atallah, L.; Lo, B.; Yang, G.Z. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August– 3 September 2011; pp. 369–372. [Google Scholar]
- Watanapa, B.; Patsadu, O.; Dajpratham, P.; Nukoolkit, C. Post-Fall Intelligence Supporting Fall Severity Diagnosis Using Kinect Sensor. Appl. Comput. Intell. Soft Comput. 2018, 2018, 5434897. [Google Scholar] [CrossRef]
- Koo, B.; Kim, J.; Nam, Y.; Kim, Y. The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions. Sensors 2021, 21, 4638. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Huang, H.Y.; Liu, K.C.; Liu, C.P.; Chan, C.T.; Hsu, S.J.P. Multiphase identification algorithm for fall recording systems using a single wearable inertial sensor. Sensors 2021, 21, 3302. [Google Scholar] [CrossRef]
- Hossain, F.; Ali, M.L.; Islam, M.Z.; Mustafa, H. A direction-sensitive fall detection system using single 3D accelerometer and learning classifier. In Proceedings of the International Conference on Medical Engineering, Health Informatics and Technology (MediTec), Dhaka, Bangladesh, 17–18 December 2016; pp. 1–6. [Google Scholar]
- Hossain, S.F.; Islam, M.Z.; Ali, M.L. Real time direction-sensitive fall detection system using accelerometer and learning classifier. In Proceedings of the 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 99–104. [Google Scholar]
- Lee, W.; Song, T.S.; Youn, J.H. Fall Direction Detection using the Components of Acceleration Vector and Orientation Sensor on the Smartphone Environment. J. Korea Multimed. Soc. 2015, 18, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K. Determination of fall direction before impact using support vector machine. J. Sens. Sci. Technol. 2015, 24, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Kim, J.; Koo, B.; Kim, Y. Evaluation of inertial sensor-based pre-impact fall detection algorithms using public dataset. Sensors 2019, 19, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmerini, L.; Klenk, J.; Becker, C.; Chiari, L. Accelerometer-based fall detection using machine learning: Training and testing on real-world falls. Sensors 2020, 20, 6479. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, F.; Ehatisham-ul Haq, M.; Azam, M.A. Activity-aware fall detection and recognition based on wearable sensors. IEEE Sens. J. 2019, 19, 4528–4536. [Google Scholar] [CrossRef]
- Gibson, R.M.; Amira, A.; Ramzan, N.; Casaseca-de-la Higuera, P.; Pervez, Z. Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic. Appl. Soft Comput. 2016, 39, 94–103. [Google Scholar] [CrossRef]
- Rosati, S.; Balestra, G.; Knaflitz, M. Comparison of different sets of features for human activity recognition by wearable sensors. Sensors 2018, 18, 4189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, X.; Gao, Q.; Ma, X.; Feng, X.; Wang, H. Device-free simultaneous wireless localization and activity recognition with wavelet feature. IEEE Trans. Veh. Technol. 2016, 66, 1659–1669. [Google Scholar] [CrossRef]
- Ellouzi, C.; Trkov, M. Fast Trip Detection Using Continuous Wavelet Transform. In Proceedings of the Poster, Dynamic Walking Conference, Virtual, 20 May 2021. [Google Scholar]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdu-Aguye, M.G.; Gomaa, W. Competitive feature extraction for activity recognition based on wavelet transforms and adaptive pooling. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, A.S.; Kumar, A.; Sierra-Sosa, D.; Elmaghraby, A.S. Determining Fall direction and severity using SVMs. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 9–11 December 2020; pp. 1–7. [Google Scholar]
- Waheed, M.; Afzal, H.; Mehmood, K. NT-FDS—A Noise Tolerant Fall Detection System Using Deep Learning on Wearable Devices. Sensors 2021, 21, 2006. [Google Scholar] [CrossRef] [PubMed]
- Zurbuchen, N.; Wilde, A.; Bruegger, P. A machine learning multi-class approach for fall detection systems based on wearable sensors with a study on sampling rates selection. Sensors 2021, 21, 938. [Google Scholar] [CrossRef]
- Boutellaa, E.; Ghanem, K.; Tayakout, H.; Kerdjidj, O.; Harizi, F.; Bourennane, S. A tensor approach for activity recognition and fall detection using wearable inertial sensors. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 203–207. [Google Scholar]
- Silla, C.N.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 2011, 22, 31–72. [Google Scholar] [CrossRef]
- Wang, Z.; Ramamoorthy, V.; Gal, U.; Guez, A. Possible life saver: A review on human fall detection technology. Robotics 2020, 9, 55. [Google Scholar] [CrossRef]
SisFall | Assigned | Assigned |
---|---|---|
Activity Code | Activity Name | Activity Label |
D01 | Walking | W |
D02 | Walking | W |
D03 | Jogging | J |
D04 | Jogging | J |
D05 | Walking | W |
D06 | Walking | W |
D07 | Sit | S |
D08 | Sit | S |
D09 | Sit | S |
D10 | Sit | S |
D11 | Sit | S |
D12 | Sit | S |
D13 | Sit | S |
D14 | - | - |
D15 | Standing | SB |
D16 | Standing | SB |
D17 | - | - |
D18 | - | - |
D19 | - | - |
SisFall | Assigned Fall Name | Assigned | ||
---|---|---|---|---|
Fall Code | Direction Only | Severity Only | Direction + Severity | Fall Label |
F01 | Forward Fall | Hard Fall | Forward Hard Fall | FHF |
F02 | Backward Fall | Hard Fall | Backward Hard Fall | BHF |
F03 | Lateral Fall | Hard Fall | Lateral Hard Fall | LHF |
F04 | Forward Fall | Hard Fall | Forward Hard Fall | FHF |
F05 | Forward Fall | Hard Fall | Forward Hard Fall | FHF |
F06 | Forward Fall | Soft Fall | Forward Soft Fall | FSF |
F07 | Lateral Fall | Soft Fall | Lateral Soft Fall | LSF |
F08 | Forward Fall | Soft Fall | Forward Soft Fall | FSF |
F09 | Lateral Fall | Soft Fall | Lateral Soft Fall | LSF |
F10 | Forward Fall | Soft Fall | Forward Soft Fall | FSF |
F11 | Backward Fall | Soft Fall | Backward Soft Fall | BSF |
F12 | Lateral Fall | Soft Fall | Lateral Soft Fall | LSF |
F13 | Forward Fall | Soft Fall | Forward Soft Fall | FSF |
F14 | Backward Fall | Soft Fall | Backward Soft Fall | BSF |
F15 | Lateral Fall | Soft Fall | Lateral Soft Fall | LSF |
Activity | Observation Window Size (F1 Score [%]) | ||||
---|---|---|---|---|---|
2 s | 3 s | 4 s | 5 s | 6 s | |
BHF | 86.79 | 83.02 | 79.25 | 83.64 | 85.19 |
BSF | 92.17 | 90.76 | 89.08 | 90.76 | 93.22 |
FHF | 78.53 | 80.47 | 78.32 | 79.21 | 78.83 |
FSF | 73.39 | 77.18 | 72.5 | 76.83 | 76.79 |
J | 97.53 | 98.27 | 98.08 | 98 | 98.16 |
LHF | 52.83 | 67.8 | 62.75 | 59.26 | 58.62 |
LSF | 79.69 | 82.73 | 77.57 | 81.46 | 79.41 |
S | 95.27 | 96.2 | 97.6 | 95.84 | 95.93 |
SB | 87.29 | 85.71 | 91.98 | 90.61 | 91.71 |
W | 98.08 | 98.46 | 98.12 | 98.35 | 98.16 |
Activity | Sensing Modality (F1 Score [%]) | ||
---|---|---|---|
Accelerometer + Gyroscope | Accelerometer | Gyroscope | |
BHF | 83.02 | 67.92 | 82.14 |
BSF | 90.76 | 85.48 | 78.18 |
FHF | 80.47 | 83.33 | 71.17 |
FSF | 77.18 | 73.21 | 63.96 |
J | 98.27 | 97.79 | 95.59 |
LHF | 67.8 | 54.55 | 55.56 |
LSF | 82.73 | 76.34 | 73.21 |
S | 96.2 | 95.61 | 91.17 |
SB | 85.71 | 86.21 | 76.09 |
W | 98.46 | 98.24 | 96.3 |
Activity | Precision (%) | Sensitivity (Recall) (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|
BHF | 95.65 | 73.33 | 99.96 | 83.02 |
BSF | 91.53 | 90 | 99.8 | 90.76 |
FHF | 86.08 | 75.56 | 99.57 | 80.47 |
FSF | 76.86 | 77.5 | 98.88 | 77.18 |
J | 97.87 | 98.68 | 99.36 | 98.27 |
LHF | 68.97 | 66.67 | 99.65 | 67.8 |
LSF | 79.85 | 85.83 | 98.96 | 82.73 |
S | 95 | 97.44 | 99.31 | 96.2 |
SB | 93.75 | 78.95 | 99.8 | 85.71 |
W | 97.95 | 98.97 | 98.36 | 98.46 |
Activity | F1 Score (%) | |
---|---|---|
Method of [28] | Proposed Scheme | |
BHF | 87.72 | 93.1 |
BSF | 94.02 | 97.44 |
FHF | 83.06 | 87.21 |
FSF | 81.15 | 82.2 |
J | 96.5 | 98.27 |
LHF | 62.22 | 73.33 |
LSF | 85.83 | 87.3 |
S | 96.83 | 97.13 |
SB | 89.13 | 92.63 |
W | 98.14 | 99.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling. Sensors 2021, 21, 6653. https://doi.org/10.3390/s21196653
Syed AS, Sierra-Sosa D, Kumar A, Elmaghraby A. A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling. Sensors. 2021; 21(19):6653. https://doi.org/10.3390/s21196653
Chicago/Turabian StyleSyed, Abbas Shah, Daniel Sierra-Sosa, Anup Kumar, and Adel Elmaghraby. 2021. "A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling" Sensors 21, no. 19: 6653. https://doi.org/10.3390/s21196653
APA StyleSyed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling. Sensors, 21(19), 6653. https://doi.org/10.3390/s21196653